高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
2220 单轴高精度加速度计
产品详细介绍特点:传感器:微机械电容、充氮阻尼、密封封装内置温度传感器(用于输出温度补偿)输出阻抗低,可支持远距离传输全量程线性标定DC/AC 加速度响应可提供非标量程定制服务传感器已内置放大信号处理符合RoHS标准应用:飞行测试 仪器仪表 机器人安全系统 冲撞测试 机械控制振动检测 模态分析 振动分析车辆动态性能测试参数:传感器性能:(数据为9~32V供电,温度输出 25℃ 得出)性能 -002 -005 -010 -025 -050 -100 -200 单位输入量程 ±2 ±5 ±10 ±25 ±50 ±100 ±200 g频率响应(3dB) 0-400 0-600 0-1000 0-1500 0-2000 0-2500 0-3000 Hz灵敏度(差分输出) 2000 800 400 160 80 40 20 mV/g输出噪声(差分模式,典型值) 8 9 10 25 50 100 200 μg/root HZ可承受最大冲击(0.1ms) 2000 g传感器性能:(除注明外,数据为9~32V供电,温度输出 25℃ ,差分模式得出)性能参数 最小值 典型值 最大值 单位横轴灵敏度 1 2 %偏置标定误差 -002   4 满量程的% -005~-200   1.5 偏置温漂TC=-55~125℃ -002,005 100 200 PPM%满量程/℃ -010~-400 50 100 标定误差比例因子 1 2 %温漂比例因子TC=-55~125℃ -150   +150 Ppm/ ℃非线性(±90%满量程) -002~-050 0.15  0.5 满量程的% -100 0.25 1.0 -200 0.4 1.5 电源抑制比 65 DB输出阻抗 1 欧姆供电电压 9   32 V功耗 12 14 mA质量(L型) 10 克
上海维逸测控技术有限公司 2021-08-23
2470 三轴高精度加速度计
产品详细介绍特点:传感器:微机械电容、充氮阻尼、密封封装内置温度传感器(用于输出温度补偿)全量程线性标定DC/AC 加速度响应可提供非标量程定制服务传感器已内置放大信号处理符合RoHS标准应用:地震监测 消费电子 机器人安全系统 冲撞测试 机械控制振动检测 模态分析 振动分析仪器仪表 车辆动态性能测试参数:传感器性能:(数据为8~32V供电,温度输出 25℃ 得出)性能 -002 -005 -010 -025 -050 -100 -200 单位输入量程 ±2 ±5 ±10 ±25 ±50 ±100 ±200 g频率响应(3dB) 0-400 0-600 0-1000 0-1500 0-2000 0-2500 0-3000 Hz灵敏度(差分输出) 2000 800 400 160 80 40 20 mV/g输出噪声(差分模式,典型值) 12 14 15 38 75 150 300 μg/root HZ可承受最大冲击(0.1ms) 2000 g传感器性能:(除注明外,数据为8~32V供电,温度输出 25℃ ,差分模式得出)性能参数 最小值 典型值 最大值 单位横轴灵敏度 2 3 %偏置标定误差 -002   4 满量程的% -005~-200   1.5 偏置温漂TC=-55~125℃ -002 100 200 PPM%满量程/℃ -005~-400 50 100 标定误差比例因子 1 2 %温漂比例因子TC=-55~125℃ -150     +150 Ppm/ ℃非线性(±90%满量程) -002~-050 0.15 0.5 满量程的% -100 0.25 1.00 -200 0.4 1.5 电源抑制比 65 DB输出阻抗 1 欧姆供电电压 8 32 V功耗 27 30 mA质量  21 克
上海维逸测控技术有限公司 2021-08-23
机器人无人机高精度室内定位
机器人无人机六自由度实时位姿采集与定位追踪 NOKOV可实现高精度实时室内定位与运动追踪,对六自由度位姿数据与关节角度等运动学数据进行采集。 得到的数据可以通过VRPN传输,或通过SDK(C++语言)端口广播与ROS、Labview、Matlab(包含Simulink) 等软件通信进行二次开发。 室内定位 • NOKOV(度量)光学三维动作捕捉系统可实时获取机器人和无人机精准位置、姿态和六自由度(6DoF)位姿数据。 • 即使是数百平米的超大实验室环境内,也能完成对单个/多个机器人或无人机的稳定的位姿采集与定位追踪,并实时输出位置与姿态数据。 多刚体结构定位 在机械臂、机械手、仿人机器人、仿生机器人、四足/六足机器人、外骨骼机器人、机器人化动力假肢等多刚体的研究中,NOKOV可实时 获取多刚体结构的关节角度与六自由度数据信息,并支持数据导出。 人体步态动作捕捉 NOKOV(度量)光学三维动作捕捉系统可采集人或其他生物的三维位置数据(三维空间坐标)、六自由度(6DoF) 的运动轨迹和关节角度、旋转、足跟坐标等运动学数据。基于整套系统超高的实时性,NOKOV可支持数据的实时可视化, 并可导出至第三方软件进行进一步的数据处理。 常见关节角度:头和躯干、上肢(肩、肘、腕、手)、下肢(髋、膝、踝、足)。
北京度量科技有限公司 2021-02-01
高精度 计算机辅助孔型设计、模拟和优化(CAE)
在棒材、线材、型材及管材等轧制工艺制度制定中,首要任务之一是进行科学的孔型设计。孔型设计合理与否直接影响到轧制效率、产品质量和实际操作条件等。棒、线、型材及管材等轧机的经济效益可以通过提高孔型设计质量和优化轧制工艺制度(包括速度制度等)来实现。传统孔型设计主要是依据经验试(凑)错法,往往需要经过多次试轧和修正才能轧出合格产品,研发周期长、成本大。本项目《高精度计算机辅助孔型设计、模拟和优化(CAE)技术》针对各类棒线型材及管材产品以现代计算机辅助工程 CAE 为核心技术进行孔型设计,采用反映轧制过程多阶段、多影响因素的精确数学模型,在满足咬入及变形条件、孔型中稳定条件以及设备能力和电机负荷等限制条件下,进行孔型优化设计,既获得满足要求的轧材几何形状、尺寸精度、表面质量和组织性能等,又达到高效率生产的目的。其设计系统的核心是应用计算机优化获得最佳孔型系统、轧辊及孔型配置以及最优工艺控制方案和工艺控制模型,还可以对孔型设计结果进行计算机模拟,根据模拟结果再对孔型设计方案进行必要的修改,用计算机模拟和优化加速孔型设计进程、提高孔型设计质量(包括安全性、可靠性、共用性等),减少或代替试轧过程。该技术可应用于各类棒、线、型材及管材等轧制过程的孔型设计,其中包括:螺纹钢筋(包括切分轧制)、圆钢、方钢、角钢、槽钢、工字钢、 轻轨、重轨、扁钢、球扁钢、H 型钢、T 型钢等各类简单断面、复杂或异形断面型材等;热弯或冷弯型材等;管材孔型设计(包括穿孔机孔型、连轧管孔型以及周期式冷轧管机组)等。连续式轧机、半连轧、万能轧制法以及横列式轧机等;环件轧制等特种轧制工艺。钢种:各类碳素钢、碳结、优质碳结、各类合金钢和特殊钢等。
北京科技大学 2021-04-13
远程在线高精度温度控制系统和成套装置
远程在线高精度温度控制系统利用测控软件LabVIEW编写控制算法和远程监控程序,可对多达30段的温度设定曲线进行操作,并可根据用户要求固化若干条固定曲线。系统采用神经网络PID调节方式,具有自整定、自学习功能、超调小、稳定度好等优点,控温精度在0.1%以内。系统采用LabVIEW编写远程控制程序,基于TCP/IP协议建立服务器端和客户端,通过与PLC通讯,实现远程在线监控功能。用户可以通过客户端对远端的服务器进行在线控制,可对现场电流电压、实时温度进行检控,历史记录调用处理,并且可以对现场设备进行在线远程启动、停止、复位、紧急停车等操作。系统通过LabVIEW建立良好界面,被测温度和设定温度等参数均为数字加曲线实时动态显示,界面简洁直观,操作简单方便,安全可靠。本团队研究开发的远程在线控制系统和成套装置目前处于产业化前期阶段。
南京工业大学 2021-04-13
深海高精度、快响应温盐溶氧传感器研制
研发阶段/n从深海研究中对温度、盐度和溶氧参数的测量需求出发,针对现有高精度CTD 传感器产品主要被国外产品垄断,并且在温度变化剧烈时,容易因为温度和电导率 传感器响应速度不一致造成较大动态测量误差,难以在深海热液冷泉周边环境中进 行高精度测量的问题,以及现有溶解氧传感器响应速度较慢的问题,攻克快速响应 的电导率和溶解氧参数测量技术,研究实现支持深海快速移动测量的温盐-溶氧传 感器。
中国科学院大学 2021-01-12
高效高精度智能化系列测量装备研发及应用
高效率、高精度智能化测量技术已成为我国发展高端制造业的瓶颈。本项目突破了高效率、高精度智能化测量的一系列难题,形成的自主创新关键技术有: 1.首次建立了基于运动学图谱分析的智能测量装备设计方法及通用性设计理论体系,使研发周期缩短了40%,研发费用降低了35%。 2.针对多传感器高精度配准的国际性难题,发明了多传感器联合标定标准器的设计方法。 3.针对测量装备伺服系统高平稳性控制的难题,率先提出了体现温度影响的非线性摩擦建模方法,测量装备运动平稳性提高了59%。 已申请国家发明专利18项(授权5项)、实用新型专利12项(授权12项)、软件著作权7项;以金国藩院士为主任的鉴定委员会一致认为项目整体技术达到国际领先水平。获得2013年天津市科技进步一等奖。 图1 缸套类零件检测用高效高精度智能测量装备 图2 惯性元件检测用高效高精度智能测量装备 图3 手机外壳检测用高效高精度智能测量装备
天津大学 2023-05-12
一种高精度稠密室内场景重建技术
1. 痛点问题 场景三维重建是未来视觉成像技术发展的重要趋势,支撑导航与人机交互、虚拟现实与增强现实(VR/AR)、在线文旅、工程设计等前沿领域应用革命性发展。 目前技术仅仅是根据局限于面元自身区域内不同时刻的信息融合得到该面元的最终重建结果,忽略了面元之间的关系,导致重建面元的自由度过大,同时由于遮挡、光照变化、纹理不足、运动等因素的影响,降低了深度图像的稠密度,同时存在相关尺度模糊问题。重建面元受到输入深度图像噪声以及定位系统对相机定位误差的影响,出现重建面元的位置及朝向可能与真实值存在明显偏差,且相邻面元之间可能存在不一致的情况,导致最终重建的三维模型的稠密度、鲁棒性、一致性和准确性较低。 2. 解决方案 本项目成果提出了一套高精度稠密室内场景重建技术,首先提出基于物理空间推理和语义关联建模的场景多粒度(像素/体素-超像素/体素-对象-场景)感知方法,综合语义信息、几何结构信息以及时空间信息进行滤波,实现准确深度估计,联合光流估计与相机位姿估计进行多任务自监督训练,实现深度估计网络权重的在线调整,提高深度估计在未知场景下的性能,进一步引入在室内场景中常见的三种局部和全局尺度空间平面关系约束,为每一个重建面元提取三种支撑面元集,以支撑面元为载体将面元之间的空间关系作为额外约束引入密集面元生成阶段,抑制深度图噪声和定位误差的负面影响,提出基于语义先验的实时概率稠密重建方法,通过时序传播与概率模型更新实现实时场景深度重建,提高最终三维重建模型的稠密度、鲁棒性、一致性和准确度,新引入的部分计算量小,能保持现有方案的实时性和可扩展性,能够快速对大场景进行实景稠密三维重建,为用户提供低成本、高效率、极便捷的空间3D重建解决方案。 合作需求 寻求在VR/AR、机器人、智慧城市等领域有相关技术开发、市场推广经验,能推广本技术落地的高科技企业,可以进行深度合作。
清华大学 2022-01-24
高效高精度智能化系列测量装备研发及应用
高效率、高精度智能化测量技术已成为我国发展高端制造业的瓶颈。本项目突破了高效率、高精度智能化测量的一系列难题,形成的自主创新关键技术有: 1.首次建立了基于运动学图谱分析的智能测量装备设计方法及通用性设计理论体系,使研发周期缩短了40%,研发费用降低了35%。 2.针对多传感器高精度配准的国际性难题,发明了多传感器联合标定标准器的设计方法。 3.针对测量装备伺服系统高平稳性控制的难题,率先提出了体现温度影响的非线性摩擦建模方法,测量装备运动平稳性提高了59
天津大学 2021-04-14
低成本超宽带高精度快起型锁相环
稳定精确的频率源是现代电路系统中必不可少的模块,广泛应用于通信、雷达、数据处理等场景。伴随着第五代通信系统的商业化应用,对于多频率、超宽带、低噪声的时钟信号需求愈发高涨。本成果针对不同的频段应用场景需求,提出一种快起快锁的多核超宽带锁相环芯片,内嵌的单核快起、多核切换结构使得该芯片可覆盖54MHz-6.8GHz的工作频率,并在全频段内相位噪声优于-120dBc/Hz@1MHz,稳定锁定时间低于25μs。芯片采用180nm CMOS工艺实现,整体性能逼近市面上已有高端锁相环芯片,而生产成本则大幅降低,具备的较高的市场差异化竞争力,可实现多场景下的芯片国产替代。
北京理工大学 2023-03-24
首页 上一页 1 2
  • ...
  • 9 10 11
  • ...
  • 167 168 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1