高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
欢迎报名 | [5月23日·长春]智能化时代的创新创业教育与产教融合论坛启动报名
为深入贯彻落实习近平总书记关于教育的重要论述和全国教育大会精神,贯彻落实《教育强国建设规划纲要(2024—2035年)》和三年行动计划,研讨高等教育强国建设新路径新范式,宣传高等教育强国研究成果,中国高等教育培训中心决定举办“智能化时代的创新创业教育与产教融合论坛”(以下简称“论坛”)。
中国高等教育学会 2025-05-16
融合架构的高时效可扩展大数据分析平台
大数据应用的多样化 需要的计算模型、数据模型多样化; 目前每类模型需要单独的开源系统来支持(如HDFS、HBase、Neo4j、MongoDB,Flink,Spark,Tensorflow等)。 多系统导致大数据分析平台非常复杂、效率低下。研究目标:研究和开发面向新型多计算模型融合架构的、高时效、可扩展的新 一代大数据分析支撑系统与工具平台FAST(Fusion-Architecture, Scalable, Time-efficient big data analysis platform)。针对目前大数据分析平台复杂、效率低下的痛点,该系统具有三个 方面的优势:首先,这套系统采用融合架构,一方面实现关系、图、键 值、文档等多种数据模型的高效融合,另一方面实现批处理计算、流计 算的深度融合,并可以通过SQL扩展语言来进行多模型的统一查询,实现高效的跨模型查询。其次,对于复杂系统来说,时效性非常重要,这 套系统采用融合架构提高效率是实现高时效的基础,更重要的是,我们 对大数据分析从数据到用户进行了端到端的全栈时效优化。最后,对于 大数据应用来说,系统扩展性非常重要,本系统在资源层、存储层和计 算层进行了全面的扩展性优化。下面在融合架构、高时效和可扩展这三 个方面,分别详细介绍FAST系统的三个主要亮点。融合架构FAST系统的第一个亮点是融合架构,我们在技术方面的创新主要包 括多数据模型融合和多计算模型融合两方面。多数据模型融合:设计和研发了多模型数据管理与查询引擎,支持关系、图、键值、 文档等多种数据模型,实现了查询解析、查询优化、元数据管理、数据 分布等功能,将多种数据模型进行统一管理和深度融合。同时扩展了SQL语言,通过统一的查询接口支持对关系、键值、图、文档等数据进行独立访问或者跨模型查询。经过试验,多模型数据融合查询,比Spark 2.3.4的查询时间能平均减少70.7%。目前spark等现有系统还需要手工编程方式来实现跨模型查 询,所以FAST系统在易用性上也表现良好,降低使用门槛,提高开发效率。多计算模型融合:在计算层实现了最常见的批处理计算和流计算深度融合,批流融合的核心方法是在系统内部实现批和流的统一表达,批是对有限数据集 的运算,流是对无限数据流的计算,我们设计了UCollection结构对批和 流数据进行统一表达,通过识别的bounded标志,来确定是批、流、或批流融合。有了统一表达,可以开展一系列融合优化来提升系统性能。 并且对上通过Unified API统一用户的批、流接口,实现二者在编程范式上的统一表达。对于批流混合的计算,融合架构系统的查询延迟比Flink 1.4.2能减少57%,吞吐量平均可以提升到6.72倍。高时效FAST系统的第二个亮点是高时效,即缩短大数据分析的时间消耗, 提高效率。由于大数据分析平台是一个非常复杂的系统,为了做到高时效,系统不能存在性能短板,因此需要对大数据分析的整个过程进行端到端的全栈时效优化。如图中所示,自下而上,需要在多模态存储、批流融合、机器学习、人工操作各层都进行优化。对于多模态存储,面向应用负载和异构硬件特征进行自适应优化;对于批流融合计算,在统一表达基础上,进行系列融合优化技术, 包括DAG优化、迭代优化、部署优化、操作符优化等;在机器学习层面,进行模型优化、消息优化、梯度优化、概率优化 等来提高时效;而且我们也考虑到大数据分析过程中用户人工操作的时效性问题, 通过智能地进行大数据分析方法和模型的推荐,来缩减人工操作的 时间。可扩展FAST系统的第三个亮点是可扩展,由于大数据应用规模很大,数据增速快,对系统可扩展性的要求非常高,为此我们在系统的资源层、 存储层和计算层进行了全面的扩展性优化。在资源层,系统都部署在云计算的虚拟化资源之上,利用了云计算资源的弹性机制进行系统扩展。并在系统中实现了可伸缩调整模块, 能实时监控软硬件系统的状态,按照应用需求来自适应地进行弹性伸缩。在存储层,分布式存储系统扩展性的关键在于分布式共识和一致性 协议(Raft),因此提出了KV-Raft、vRaft等进行Raft的扩展优化。在计算层,我们扩展了机器学习模型的参数规模,使系统可以支持 到百亿级别的超大规模机器学习模型训练,并且性能方面有明显提 升。亮点成果:融合架构大数据分析平台目前已经在阿里巴巴双十一进行示范应用。 从2020年11月10日至11月16日一周的时间,在阿里的生产环境中,研发 的系统一直连续稳定运行,基于淘宝和天猫的实际用户信息进行大数据 分析,综合运用了本系统的存储、计算、机器学习等多个模块的能力, 累计进行了184亿件商品推荐。同时在双十一期间,基于智能交互向导技术,也面向电子商务应用 的卖家提供了“生意参谋”应用,基于大数据分析,帮助卖家分析产品 销量变化的原因,以及促销的有效手段等。
中国人民大学 2021-04-10
融合架构的高时效可扩展大数据分析平台
研究背景:  大数据应用的多样化  需要的计算模型、数据模型多样化;  目前每类模型需要单独的开源系统来支持(如HDFS、HBase、Neo4j、MongoDB,Flink,Spark,Tensorflow等)。  多系统导致大数据分析平台非常复杂、效率低下。 研究目标: 研究和开发面向新型多计算模型融合架构的、高时效、可扩展的新 一代大数据分析支撑系统与工具平台FAST(Fusion-Architecture, Scalable, Time-efficient big data analysis platform)。 针对目前大数据分析平台复杂、效率低下的痛点,该系统具有三个  方面的优势:首先,这套系统采用融合架构,一方面实现关系、图、键  值、文档等多种数据模型的高效融合,另一方面实现批处理计算、流计  算的深度融合,并可以通过SQL扩展语言来进行多模型的统一查询,实现高效的跨模型查询。其次,对于复杂系统来说,时效性非常重要,这  套系统采用融合架构提高效率是实现高时效的基础,更重要的是,我们  对大数据分析从数据到用户进行了端到端的全栈时效优化。最后,对于  大数据应用来说,系统扩展性非常重要,本系统在资源层、存储层和计  算层进行了全面的扩展性优化。下面在融合架构、高时效和可扩展这三  个方面,分别详细介绍FAST系统的三个主要亮点。 融合架构 FAST系统的第一个亮点是融合架构,我们在技术方面的创新主要包  括多数据模型融合和多计算模型融合两方面。 多数据模型融合: 设计和研发了多模型数据管理与查询引擎,支持关系、图、键值、  文档等多种数据模型,实现了查询解析、查询优化、元数据管理、数据  分布等功能,将多种数据模型进行统一管理和深度融合。同时扩展了SQL语言,通过统一的查询接口支持对关系、键值、图、文档等数据进行独立访问或者跨模型查询。 经过试验,多模型数据融合查询,比Spark 2.3.4的查询时间能平均减少70.7%。目前spark等现有系统还需要手工编程方式来实现跨模型查 询,所以FAST系统在易用性上也表现良好,降低使用门槛,提高开发效率。 多计算模型融合: 在计算层实现了最常见的批处理计算和流计算深度融合,批流融合的核心方法是在系统内部实现批和流的统一表达,批是对有限数据集  的运算,流是对无限数据流的计算,我们设计了UCollection结构对批和  流数据进行统一表达,通过识别的bounded标志,来确定是批、流、或批流融合。有了统一表达,可以开展一系列融合优化来提升系统性能。 并且对上通过Unified API统一用户的批、流接口,实现二者在编程范式上的统一表达。对于批流混合的计算,融合架构系统的查询延迟比Flink 1.4.2能减少57%,吞吐量平均可以提升到6.72倍。 高时效 FAST系统的第二个亮点是高时效,即缩短大数据分析的时间消耗,  提高效率。由于大数据分析平台是一个非常复杂的系统,为了做到高时效,系统不能存在性能短板,因此需要对大数据分析的整个过程进行端到端的全栈时效优化。如图中所示,自下而上,需要在多模态存储、批流融合、机器学习、人工操作各层都进行优化。 对于多模态存储,面向应用负载和异构硬件特征进行自适应优化; 对于批流融合计算,在统一表达基础上,进行系列融合优化技术, 包括DAG优化、迭代优化、部署优化、操作符优化等; 在机器学习层面,进行模型优化、消息优化、梯度优化、概率优化 等来提高时效; 而且我们也考虑到大数据分析过程中用户人工操作的时效性问题,  通过智能地进行大数据分析方法和模型的推荐,来缩减人工操作的  时间。 可扩展 FAST系统的第三个亮点是可扩展,由于大数据应用规模很大,数据增速快,对系统可扩展性的要求非常高,为此我们在系统的资源层、  存储层和计算层进行了全面的扩展性优化。 在资源层,系统都部署在云计算的虚拟化资源之上,利用了云计算资源的弹性机制进行系统扩展。并在系统中实现了可伸缩调整模块,  能实时监控软硬件系统的状态,按照应用需求来自适应地进行弹性伸缩。 在存储层,分布式存储系统扩展性的关键在于分布式共识和一致性 协议(Raft),因此提出了KV-Raft、vRaft等进行Raft的扩展优化。 在计算层,我们扩展了机器学习模型的参数规模,使系统可以支持  到百亿级别的超大规模机器学习模型训练,并且性能方面有明显提  升。 亮点成果: 融合架构大数据分析平台目前已经在阿里巴巴双十一进行示范应用。  从2020年11月10日至11月16日一周的时间,在阿里的生产环境中,研发 的系统一直连续稳定运行,基于淘宝和天猫的实际用户信息进行大数据 分析,综合运用了本系统的存储、计算、机器学习等多个模块的能力, 累计进行了184亿件商品推荐。 同时在双十一期间,基于智能交互向导技术,也面向电子商务应用  的卖家提供了“生意参谋”应用,基于大数据分析,帮助卖家分析产品  销量变化的原因,以及促销的有效手段等。
中国人民大学 2021-05-09
基于局部分割与融合的特定人物识别
随着视频与图像技术的快速发展,在监控视频中识别特定人物身份有着重要的实用价值。本项目   针对现实场景下,普遍存在的面部遮挡以及拍摄机位和镜头距离变化,而导致传统基于正面人脸的识 别方法的准确率将大大降低,甚至识别错误的问题,提出了一种基于局部分割与融合的算法,应用于 视频分析平台下的特定人物识别,融合多部位识别特征,提高了部分遮挡、多场景和镜头变化下的人 物识别鲁棒性,经充分验证,达到了先进的识别精度,可以满足实际应用的需求。该技术是优化并提 高复杂背景下人物识别精准度的一项核心技术,已申请国家发明专利 1 项。
北京工业大学 2021-04-13
一种视频摘要中事件与背景的融合方法
本发明公开了一种视频摘要中事件与背景的融合方法。该方法在前景检测与目标跟踪的基础上,将事件与背景的融合问题分成事件预处理、背景帧选择、事件与背景融合三个步骤。首先对事件进行预处理,包括对事件按面积大小排序并调整局部亮度;然后,用事件投票的方式选择最优背景帧,使尽可能多的事件落在该帧背景上;最后融合事件与背景,根据当前位置的像素点在背景帧上的状态标志值和在图像块上的二值前景值选择使用泊松图像编辑方法融合或加权融合
华中科技大学 2021-04-14
基于多尺度空洞融合迭代优化的增强图像隐写
本发明公开了一种基于多尺度空洞融合迭代优化的增强图像隐写,适用于图像隐写领域,包括以下步骤:使用封面图像C获取其对应的增强图像E后,分别对其进行特征提取,后引入多尺度空洞融合的注意力机制;再将两个图像的特征融合得到图像X;之后与秘密连接形成载密张量M;编码器接收三个输入:图像M的特征、当前的扰动,以及这个扰动的损失函数的梯度进行拼接形成GRU单元的输入;通过反复应用编码器,最终生成的隐写图像;解码器接收编码器生成的隐写图像,经过一系列卷积,从隐写图像中恢复原始的隐藏信息;批评者网络来评估生成的隐写图像的自然性,并提供反馈;重复步骤2到5。最终生成的图像即为包含隐藏信息的隐写图像。本方法将学习和迭代优化方法结合起来,在双通道输入图像增强下结合多尺度融合注意力机制,从而找到图像中更适合隐藏信息的部分,使生成的隐写图像更加隐蔽。
南京工业大学 2021-01-12
2024产教融合与高素质人才培养论坛在重庆举办
与会嘉宾从多维视角深入探讨教育链、人才链与产业链的深度衔接机制,呈现了从政策引领、理论创新到实践探索的全面途径,产教融合合作为教育现代化和人才培养体系改革的重要路径。
云上高博会 2024-11-28
高功能涤纶蛋白复合面料和粘胶纤维蛋白复合面料
涤纶织物虽具有良好的挺阔性、褶皱弹性,但不亲水,对人体皮肤不友好,没有保健功能。粘胶纤维织 物具有 良好的吸湿、抗静电,但对皮肤没有保健功能。 开发的全新改性接枝技术,可以在涤纶纤维和涤纶织物表面接枝各种动植物蛋白,如蚕丝蛋白、牛奶蛋 白、大都蛋白、花生蛋白、蚕蛹蛋白等等。从而制备各种高功能涤纶蛋白复合面料。 改性接枝的涤紛蛋白复合面料,蛋白质都分布在涤纶纤维表面上,在服用时,与人体皮肤相接触的全是 各种动植物蛋白,对人体皮肤具有良好的保健作用。同时,织物的吸湿性、抗静电性都得到很好的改善;褶 皱弹性、挺阔性保持良好。 高功能涤纶复合蛋白面料,适宜制备高档涤纶面料,具有很高的附加值,生产工艺流程较短、成本较 低,无需投资购买新设备。该技术也同样适用于粘胶蛋白复合面料。粘胶蛋白复合面料对人体皮肤具有良好的保健作用
西南大学 2021-04-13
解析人类胆汁盐外排蛋白ABCB11的电镜结构
中国科学技术大学微尺度物质科学国家研究中心和生命科学与医学部陈宇星教授、周丛照教授、孙林峰教授课题组合作,利用冷冻电镜技术解析了人类胆汁盐外排蛋白ABCB11的近原子分辨率三维结构,为深入理解该类膜蛋白的转运机制以及其突变引发的致病机理提供了基础。该研究成果在线发表在《Cell Research》上。研究表明,胆小管上的ABC膜转运蛋白ABCB11是胆汁盐外排到胆小管中最重要的蛋白。该蛋白编码基因突变会导致各种胆汁淤积病症。自发现该基因的近20多年来,对ABCB11的研究报道持续不断,但人们对该蛋白转运胆汁盐的机理仍然不清楚。作者借助冷冻电镜技术解析了该蛋白开放状态下的3.5 Å 高分辨率的三维结构。该蛋白由1321个氨基酸残基组成,以单体的形式发挥功能。结构上包含两个彼此靠近的跨膜结构域(TMD)和两个分开的胞内核算结合结构域(NDB)以及一个N端的α螺旋,整体呈现对肝细胞内开放的构象。根据该结构提供的三维空间信息,作者对临床上该蛋白的突变体致病机理进行了分析。作者发现,临床样本的突变会破坏蛋白质分子内部的相互作用,或者使蛋白错误折叠,导致蛋白质转运功能降低或者完全丧失,最终引发相关疾病。作者还对一系列胆汁盐以及两种抑制剂(利福平、格列本脲)的刺激ATP水解活性的进行了验证,发现利福平和格列本脲以竞争方式抑制该蛋白的活性,这也是服用这类药物导致肝损伤的主要原因之一。
中国科学技术大学 2021-04-10
关于降低蛋白质药物免疫源性的研究
  蛋白质药物因其高特异性及高活性,近年来在癌症、自身免疫病、血友病、糖尿病等多种重大恶疾的治疗中愈发重要。然而,蛋白质药物通常具有较高的免疫原性,容易引发病人免疫应答产生抗药物抗体(anti-drug antibody, 简称ADA)。临床数据表明即使是人源化的蛋白质药物也会引起ADA的产生。ADA会使药物失去其效力,甚至引起严重的过敏反应威胁病人的生命安全。通过对蛋白质药物进行PEG化修饰能够延长蛋白质的循环时间,并一定程度上降低免疫原性。但近年来动物实验及临床证据均表明PEG自身具有可观的免疫原性,会诱发机体产生anti-PEG抗体(本质上也可认为是一种ADA),进而造成PEG化药物在血液中的加速清除(accelerated blood clearance, 简称ABC效应)。因此,寻找新型低免疫原性的抗生物污染高分子用于蛋白质修饰成至关重要。      在众多潜在的PEG替代高分子中,非结构性(unstructured)的柔性高分子往往更受人们青睐。比如在长效聚多肽-蛋白质融合药物中,其中聚多肽的设计往往会刻意排除具有明显二级结构的序列使其采取完全无规的构象。然而,这一为人们广泛采用的设计思路实际缺乏严格的实验证据支持。其客观原因在于难以设置合理的对照实验组以严格区分聚合物共价化学组成与构象二者分别的贡献——对于绝大部分高分子,要改变聚合物构象必然需改变其共价化学组成,反之亦然。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 10 11 12
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1