高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
自适应谐波电能计量算法与应用研究
谐波电能计量及其仪表用以定量描述电能生产、 传输、消费的全过程,广泛应用于包括光伏、风电、电动汽车、 充电站在内的新能源及传统电力系统。 项目主要功能包括:自适应迭代分解电压和电流信号得到 谐波与间谐波成分,计算其谐波含量;计量各个谐波/间谐波成 分的四象限电能计量参量;具有有功、无功能量脉冲输出,记 录参数设定、开盖检测以及电压不对称、过压、过流、超限等 事件,具有液晶循环显示功能,可通过 RS-48
合肥工业大学 2021-04-14
自动化机器学习算法研究与系统实现
研究目的和意义机器学习和人工智能已成为当今最热门的技术之一。2017年,国务院印发了《新一代人工智能发展规划》,正式将人工智能作为国家重要发展战略之一。人工智能已经成为信息技术时代的又一波浪潮。在这波浪潮的推动下,互联网行业、金融行业、传统制造业、政务民生、公安警务等各行各业都在积极向人工智能领域转型升级,利用人工智能先进技术提升智能分析和辅助决策能力,
南京大学 2021-04-14
基于分层智能探索算法的玻璃切割优化软件
本软件的主要用途是针对玻璃切割的场景提出求解多约束的矩形切割问题的分层智能搜索算法,为玻璃切割方案提供全局优化,实现原料利用率的最大化,在节约资源的同时提高产量。 一、项目分类 关键核心技术突破 二、成果简介 切割问题和装填问题在学术界属于一类经典的NP 难问题,它们有着众多的变种,例如:一维的背包问题,二维的矩形切割问题,三维的装箱问题等。其中以二维的场景应用最为广泛,相关求解算法可以作为玻璃、板材、管材、服装切割套料智能制造的算法内核。 本软件的主要用途是针对玻璃切割的场景提出求解多约束的矩形切割问题的分层智能搜索算法,为玻璃切割方案提供全局优化,实现原料利用率的最大化,在节约资源的同时提高产量。 对于玻璃切割问题约束复杂的特点,本软件有针对性的提出了一种局部解的表示方法,它使算法的分布式部署成为可能,并且大大减少了程序运行时的内存开销。为了提高算法的效率,软件采用了贪心随机的基本搜索框架,并结合问题特点,将搜索过程分为多层嵌套进行,以提高搜索的灵活性和精确性。
华中科技大学 2022-07-27
一种评价降相关算法效果的方法
本发明公开了一种评价降相关算法效果的方法,首先通过对原始协方差阵进行 Cholesky 下三角(LLT) 分解,选择 L 矩阵作为规约基计算原始协方差阵的长度缺陷。其次,对原始协方差阵进行降相关,然后得 到降相关后的协方差阵,再对其进行 Cholesky 下三角(LZLZT)分解,同样利用分解后的 LZ矩阵计算其长 度缺陷,计算方法简单且顾及了矩阵维数。最后,降相关前的长度缺陷和降相关后的长度缺陷进行做差,得 到的数值越大,表明降相关效果越好。该方法可以有效的评价降相关效果,同时长度缺陷考虑了协方差阵的 维数问题,且计算简单,克服了耗时等问题。从而有效的提高了评价方法的稳定性和实时性。 
武汉大学 2021-04-13
基于分层智能搜索算法的玻璃切割优化软件
切割问题和装填问题在学术界属于一类经典的NP 难问题,它们有着众多的变种,例如:一维的背包问题,二维的矩形切割问题,三维的装箱问题等。其中以二维的场景应用最为广泛,相关求解算法可以作为玻璃、板材、管材、服装切割套料智能制造的算法内核。 本软件的主要用途是针对玻璃切割的场景提出求解多约束的矩形切割问题的分层智能搜索算法,为玻璃切割方案提供全局优化,实现原料利用率的最大化,在节约资源的同时提高产量。
华中科技大学 2022-03-28
一种基于遗传算法的矩形检测方法
本发明的涉及一种对图像中矩形进行检测的方法。本发明旨在 寻找图像中矩形的最佳四个顶点集合,首先对图像进行边缘检测,获 得由图像中所有边缘点组成的集合即边缘空间,然后用四个边缘点表 示一个矩形个体,简称为个体,通过计算四个边缘点之间连线的存在 性和夹角接近直角的程度来计算个体的适应度,选择适用度高的个体 进行交叉和变异操作来产生新一代的个体。通过多次选择、交叉和变 异操作最终找到组成矩形四个顶点的最佳集合。该方法基于遗
华中科技大学 2021-04-14
一种基于 PID 反馈的预失真修正方法及 LED 结温温度测量方法
本发明公开了一种基于 PID 反馈的预失真方法,所述方法包括分别对采集的功率放大器输出信号中正半部分幅值、负半部分幅值和直流分量进行提取进而分别进行 PID 反馈修正,使功率放大器输出信号随时间的变化而能保持稳定。此外,在功率放大器输出稳定前提下,将基于磁纳米粒子的非接触式测温的方法应用在大功率LED灯结温温度测量。本发明基于 PID 反馈的预失真修正方法是对功率放大器的放大倍数进行实时调节,使功率放大器输出信号的正
华中科技大学 2021-04-14
一种水轮发电机组励磁系统 PID 控制参数的优选方法
本发明公开了一种水轮发电机组励磁系统 PID 控制参数优选方法,用于在水轮发电机组励磁系统中对 PID 控制参数进行优选。根据水轮发电机组励磁系统建立仿真模型,然后依据该仿真系统建立以水轮发电机机端电压和参考电压为状态量的目标函数,运用本发明设计的优选方法求解目标函数得到最优 PID 控制参数。本发明设计的水轮发电机组励磁系统 PID 控制参数的优选方法,采用一种新型启发式优化算法优化目标函数,能搜索到更小的目标函数值,得到的解代表更优的 PID 控制参数。更优的 PID 控制参数能使水轮发电机组励
华中科技大学 2021-04-14
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
首页 上一页 1 2 3 4 5 6
  • ...
  • 10 11 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1