高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
放射性药物
放射性药物是可用于诊断或治疗目的的药物,由放射性同位素与有机分子键合组成。有机分子将放射性同位素传递至特定的器官、组织或细胞。 ​ 根据特性选择放射性同位素发射穿透伽马射线的放射性同位素用于诊断(成像),发出的辐射脱离身体后被特定仪器(SPECT / PET相机)检测到。通常,用于成像的同位素产生的辐射在1天后通过放射性衰变和正常的身体排泄完全消除。最常见的用于成像的同位素是:99mTc、I123、I131、Tl201、In111和F18。 ​ 发射短程粒子(α或β)的放射性同位素用于治疗,因为它们能够在非常短的距离内失去所有能量,因此产生大量局部伤害(例如细胞破坏)。该特性用于治疗目的:破坏癌细胞,骨癌或关节炎的姑息治疗中减缓疼痛。这类同位素在体内的停留时间比成像同位素更长;用来提高治疗效率,但仍然限制在几天内。最常见的治疗同位素是:I131、Y90、Rh188和Lu177。 ​ 放射性药物的工作原理是:基于使用分子“出租车”,将受控剂量的放射性活度特异性地传递至目标患病组织(通常是癌细胞),以便根据所用放射性核素的类型可视化(诊断)或治愈(治疗)组织。放射性药物通常包含负责将放射性核素引导至目标组织的生物载体(抗体、肽等)。双功能螯合剂牢固地抓住放射性核素并确保与生物载体之间的牢固结合。
北京先通国际医药科技股份有限公司 2022-02-25
我国科学家构建单细胞环形RNA分析技术及表达图谱
环形RNA(circRNA)是一类在真核细胞中广泛存在的内源性非编码RNA分子。单细胞全长转录组测序技术的发展,可以对单个细胞中环形RNA进行捕获测定,但效率较低,仅可部分揭示单细胞分辨率下环形RNA的表达模式。因此,单细胞水平的环形RNA表达及功能研究已成为该领域重点关注的问题。
科技部生物中心 2022-07-07
蛋白-蛋白及 RNA-蛋白质相互作用成像新技术
已有样品/n本发明涉及蛋白-蛋白及RNA-蛋白质相互作用成像领域,基于激发波长在600nm以上的红色荧光蛋白mNeptune荧光片段互补技术,建立了位于活体成像“光学窗口”的双分子和三分子荧光互补系统。其中双分子荧光互补系统可以用于活细胞及活体内蛋白-蛋白相互作用成像,三分子荧光互补系统可以用于活细胞及活体内RNA-蛋白质之间的相互作用成像。该成果为首次建立活体内RNA-蛋白质相互作用荧光成像技术,该技术也将有助于开发活细胞及活体内药物评价体系和药物筛选平台。
中国科学院大学 2021-01-12
用于胚胎发育质量评估的精子长非编码RNA检测方法
本发明提供了一种用于胚胎发育质量评估的精子长非编码RNA检测方法。提取受试者精液中的RNA,进行反转录反应,得模板cDNA进行实时荧光定量PCR,检测长非编码RNA分子LA16c390E6.5的表达与正常精子样本进行比较。临床通过精子的LA16c390E6.5表达能准确的预测胚胎发育的潜能,并对疗效检测与辅助生殖方式的选择有指导意义。
四川大学 2016-10-11
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
抗体药物设计平台算法
简介: 抗体药物是生物制药中复合增长率最高的,2019年全球研究抗体市场规模为34亿美元,预计在预测期内复合年增长率为6.2%。原研药二次改造获得成药性更好的药物分子(bio-better)是抗体和细胞因子药物研发的突破口。人工智能技术广泛应用在靶点筛选、分子进化、临床各阶段研究、产品上市后的活动中。 我们开发的智能抗体设计平台,包括 抗体序列注释分析、抗体翻译后修饰位点的预测、抗原线性表位预测、抗体结构的预测与优化、 抗体-抗原相互作用的预测、抗体分子的设计与改造。高效的完成抗体亲和力成熟、稳定性优化和人源化改造等。  优势: 1、研发成本节约3-5倍,时间节省5倍,筛选成功率提升6倍 2、可以帮助指导、设计实验,减少消耗,加快速度,提高准确率 3、计算方法已经得到了实验从正、反两方面的验证。 图1:深度学习算法预测蛋白质相互作用时界面氨基酸配对:成功率72.1% 图2:计算相互作用得到了实验从正、反两方面的验证
中国人民大学 2021-05-15
抗体药物设计平台算法
抗体药物是生物制药中复合增长率最高的,2019年全球研究抗体市场规模为34亿美元,预计在预测期内复合年增长率为6.2%。原研药二次改造获得成药性更好的药物分子(bio-better)是抗体和细胞因子药物研发的突破口。人工智能技术广泛应用在靶点筛选、分子进化、临床各阶段研究、产品上市后的活动中。我们开发的智能抗体设计平台,包括 抗体序列注释分析、抗体翻译后修饰位点的预测、抗原线性表位预测、抗体结构的预测与优化、 抗体-抗原相互作用的预测、抗体分子的设计与改造。高效的完成抗体亲和力成熟、稳定性优化和人源化改造等。 优势:1、研发成本节约3-5倍,时间节省5倍,筛选成功率提升6倍2、可以帮助指导、设计实验,减少消耗,加快速度,提高准确率3、计算方法已经得到了实验从正、反两方面的验证。
中国人民大学 2021-04-10
抗体药物设计算法
技术分析(创新性、先进性、独占性)挖掘了蛋白质分子结构的几何特征,开发了新颖的优化设计算法,准确识别结合位点,准备预测抗体结构和抗体-抗原相互作用复合物结构,可以显著提高药物设计效益。自主独立开发。已经在国际竞赛中取得第一名的好成绩,也应用在生物和医学实验中,算法和程序代码完整。
中国人民大学 2021-04-10
肺动脉药物球囊
相关专利提出了一种新型球囊,用于肺动脉扩张时,减少肺动脉损伤,炎症反应导致肺动脉再次狭窄或闭塞。
天津医科大学 2021-02-01
首页 上一页 1 2 3 4 5 6
  • ...
  • 41 42 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1