高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
2,6-二氯 -4- 硝基苯胺
2,6-二氯-4-硝基苯胺 分子式:C6H4N4O2Cl2 质量指标:  外观:黄色粉末  熔点:≥ 187℃  含量:≥ 98.0% 水分:≤ 1.0% 用途:重要农药、染料中间体  包装:25Kg编织袋或按用户要求  产能:6000吨/年
山东昌邑灶户盐化有限公司 2021-08-23
美的轩逸X2-AAA级读写台灯
【产品信息】 显色:≥ 95 功率:12.5W 色温:3800K 【产品优势】 蜂窝专利灯头 定时休息 演示关灯 AAA级别照度
美智光电科技股份有限公司 2021-08-23
2‑氟‑4‑烯丙基‑6‑硝基苯酚与2‑氟‑4‑硝基‑6‑烯丙基苯酚的联合制备及用途
公开了2‑氟‑4‑烯丙基‑6‑硝基苯酚及其与2‑氟‑4‑硝基‑6‑烯丙基苯酚的联合制备方法和用途。以2‑氟苯基烯丙基醚为原料,经Claisen热重排制备2‑氟‑6‑烯丙基苯酚及2‑氟‑4‑烯丙基苯酚的混合物,向反应体系加入氯仿后直接用硫酸‑硝酸组成的混酸硝化得2‑氟‑4‑烯丙基‑6‑硝基苯酚及2‑氟‑4‑硝基‑6‑烯丙基苯酚的混合物,分离得2‑氟‑4‑烯丙基‑6‑硝基苯酚及2‑氟‑4‑硝基‑6‑烯丙基苯酚。所制两种化合物对多种病原菌及杂草具有较好的杀灭或抑制作用。
青岛农业大学 2021-04-11
维生素B6通过PKM2/Nrf2通路促进谷胱甘肽合成发挥神经保护作用
帕金森病“长线用药”存在着副作用多、几年后疗效减退的难题。南京中医药大学医学院•整合医学学院胡刚教授团队的最新研究成果《维生素B6通过PKM2/Nrf2通路促进谷胱甘肽合成发挥神经保护作用》,为帕金森病临床治疗的突破及研发理想治疗药物提供了新靶标。前不久,该项研究成果在国际一流刊物《自然通讯》上在线发表。谷胱甘肽作为细胞内一种重要的抗氧化物质,能够保护神经元免受氧化应激损伤。帕金森患者脑内普遍存在谷胱甘肽水平降低问题,导致神经元抗氧化损伤能力减弱,加剧病理进程。因此,亟需阐明脑内谷胱甘肽水平下降的分子病理机制,并通过外源性药物恢复脑内谷胱甘肽水平,为临床治疗的突破及研发理想治疗药物提供新靶标。南京中医药大学胡刚教授团队的研究新成果,首次报道了星形胶质细胞多巴胺D2受体激活后促进谷胱甘肽合成的具体分子机制,并发现小分子化合物吡哆醇可促进星形胶质细胞谷胱甘肽的合成,发挥神经保护作用。“星形胶质细胞D2型多巴胺受体激动后,通过下游非经典G蛋白β-arrestin2信号通路,直接结合并二聚化M2型丙酮酸激酶。”研究团队专家介绍,后者作为转录共激活因子增强Nrf2的转录活性,导致Nrf2与Gclc、Gclm基因启动子结合能力增强,最终促进谷胱甘肽合成。研究团队还通过对源于天然产物的小分子库筛选,找到了一种能促进谷胱甘肽合成的小分子化合物吡哆醇,该化合物能二聚化PKM2从而促进其对Nrf2的转录激活作用,进而提高脑内谷胱甘肽水平,保护神经。帕金森是全球第二大神经退行性疾病。据统计,我国60岁以上老年人帕金森病患病率为1%,65岁以上人口患病率为2%,70岁以上患病率约为3%-5%。“现在临床治疗帕金森病的一线药物,多是作用于脑内多巴胺受体的。”研究团队成员之一、南京中医药大学医学院•整合医学学院青年教师伟尧博士介绍,激活多巴胺受体可以较好地缓解帕金森症状,但存在两个比较突出的问题,一是会有恶心、嗜睡、低血压、消化道不适等副作用,二是长期服用会产生受体脱敏现象,导致服药3-5年后疗效减退,严重影响患者生活质量。如何解决这些问题,成为业界专家学者们探究的课题。
南京中医药大学 2021-04-11
一种磁性Fe3O4纳米材料嫁接酸性离子液体催化芳胺乙酰化反应的方法
(专利号:ZL 201410181859.7) 简介:本发明公开了一种磁性Fe3O4纳米材料嫁接酸性离子液体(MNPs-IL-HSO4)催化芳胺乙酰化反应的方法,属于有机化学合成领域。该乙酰化反应中芳胺与乙酸酐的摩尔比为1:1~2,MNPs-IL-HSO4催化剂的摩尔量是所用芳胺的10~15%,在室温下反应15~60min,反应后用乙醚稀释,接着用磁铁吸附出滤渣并用乙醚洗涤,收集含有乙酰化产物的滤液,滤渣经真空干燥后可以循环使用。本发明与
安徽工业大学 2021-01-12
一种2-氨基茚的合成方法
成果描述:本发明涉及一种2-氨基茚的合成方法,该方法以2-茚酮为原料,先与卤代试剂经取代反应得到化合物I,再经过还原反应,得到化合物II,最后进行氨基化反应,得到目标产物2-氨基茚。与现有技术相比,本发明所涉及的反应简单、后处理方便、原料廉价易得、产率较高、反应条件温和,是一种比较理想的2-氨基茚的制备方法。市场前景分析:与现有技术相比,本发明所涉及的反应简单、后处理方便、原料廉价易得、产率较高、反应条件温和,是一种比较理想的2-氨基茚的制备方法。与同类成果相比的优势分析:国内领先
成都大学 2021-04-10
超临界CO2萃取天然物质活性成分
传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。 超临界流体萃取的特点 1.萃取和分离合二为一,当饱含溶解物的二氧化碳超临界流体流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不存在物料的相变过程,不需回收溶剂, 操作方便;不仅萃取效率高,而且能耗较少,节约成本。  2.压力和温度都可以成为调节萃取过程的参数。临界点附近,温度压力的微小变化,都会引起CO2密度显著变化,从而引起待萃物的溶解度发生变化,可通过控制温度或压力的方法达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离;因此工艺流程短、耗时少。对环境无污染,萃取流体可循环使用,真正实现生产过程绿色化。  3.萃取温度低, CO2的临界温度为31.265℃ ,临界压力为 7.18MPa, 可以有效地防止热敏性成分的氧化和逸散,完整保留生物活性,而且能把高沸点,低挥发渡、易热解的物质在其沸点温度以下萃取出来。  4. 临界CO2 流体常态下是气体, 无毒, 与萃取成分分离后, 完全没有溶剂的残留, 有效地避免了传统提取条件下溶剂毒性的残留。同时也防止了提取过程对人体的毒害和对环境的污染, 100%的纯天然。 5.超临界流体的极性可以改变, 一定温度条件下, 只要改变压力或加入适宜的夹带剂即可提取不同极性的物质, 可选择范围广。超临界流体萃取技术的应用 本课题组现已完成:(1)从甜橙皮中萃取甜橙油(2)从银杏浸膏中萃取银杏内酯(3)发酵液制得乳酸钙中萃取还原糖、蛋白质(4)发酵液制得乳酸钙中萃取重金属离子 本课题组可承接: 紫杉、黄芪、人参叶、大麻、香獐、青蒿草、川贝草、桉叶、玫瑰花、樟树叶、茉莉花、花椒、八角、桂花、生姜、大蒜、辣椒、桔柚皮、啤酒花、芒草、香茅草、鼠尾草、迷迭香、丁子香、豆蔻、沙棘、小麦、玉米、米糠、鱼、烟草、茶叶、煤、废油等有价值组分的提纯或回收。 在超临界流体技术中,超临界流体萃取技术与天然药物现代化关系密切。SFE对非极性和中等极性成分的萃取,可克服传统的萃取方法中因回收溶剂而致样品损失和对环境的污染,尤其适用于对温热不稳定的挥发性化合物提取;对于极性偏大的化合物,可采用加入极性的夹带剂如乙醇、甲醇等,改变其萃取范围提高抽提率。
武汉工程大学 2021-04-11
Driving factors of CO2 emission inequality in China: The role of government expenditure
China has reached a consensus regarding the total control of carbon dioxide (CO2) emissions; however, regional emission inequalities still exist. The reduction of carbon emissions is a public good and indicates a strong positive externality, which is difficult to solve within the market. Such reductions are highly dependent on governmental contributions. Therefore, using the Theil index and the logarithmic mean Divisia index decomposition approach, this paper integrates government expenditure into an analysis framework, investigating the driving factors of emission inequality and the status and changes of China's CO2 emission inequality from 2007 to 2015, attributing emission inequality to disparities in governmental expenditures, energy consumption, and other socioeconomic factors.
西南财经大学 2021-02-01
SARS-CoV-2感染和损伤胆管组织的研究
2020年3月17,复旦大学赵冰、张荣、林鑫华,中国医学科学院基础医学研究所梁俊波合作在生物预印本平台bioRxiv上发表研究成果“Recapitulation of SARS-CoV-2 Infection and Cholangiocyte Damage with Human Liver Organoids”,建立了人源类器官的SARS-COV-2感染模型,确定SARS-COV-2可以感染胆管细胞,并下调胆管组织中细胞紧密连接及胆汁酸转运相关基因的表达,为新冠病毒细胞嗜性、致病机制研究和后续药物研发提供重要工具,并提示胆管功能紊乱可能是部分新型冠状病毒感染者肝脏损伤的诱因。在本项研究中,研究者应用人源肝脏类器官建立SARS-CoV-2感染模型,并研究其感染和损伤胆管组织的机制。人源类器官是由人体组织体外3D培养产生的,结构功能与体内组织器官高度相似的微型器官,可于体外模拟体内生理病理过程中的组织细胞行为。 研究者从临床肝脏手术中分离获取人胆管细胞,培育出可稳定传代的肝脏胆管类器官,应用单细胞RNA测序(scRNA-seq)对类器官中胆管细胞进行了转录组分析,发现长期培养的肝脏胆管类器官保存了ACE2+的胆管细胞类群,而此细胞类群在小鼠肝脏胆管类器官中并未发现。提示人肝脏胆管类器官可以模拟ACE2介导的SARS-CoV-2感染。接下来,研究者检测了类器官对SARS-CoV-2的易感性。研究者从上海一位COVID-19患者中分离并纯化了SARS-CoV-2病毒,接种感染来不同个体的胆管类器官。感染24小时后对类器官进行免疫荧光染色发现,SARS-CoV-2的核衣壳蛋白(N protein)在部分类器官胆管细胞中呈阳性,而未感染对照组无信号,显示病毒已经成功侵染并复制,受感染的胆管细胞还会经膜融合形成合胞体。对SARS-CoV-2基因组RNA的qRT-PCR分析显示,在感染后24小时类器官内的病毒载量显著增加。这些数据表明,人胆管上皮细胞是SARS-CoV-2的易感宿主,并可支持病毒的活跃复制,人源类器官可作为研究病毒嗜性和致病机制的工具。感染48小时后,类器官内的病毒载量明显下降,提示SARS-CoV-2感染可能导致宿主细胞死亡或抗病毒反应的激活。研究者进而关注和检测了病毒感染对类器官整体行为特性的影响。在体内稳态条件下,胆管的主要功能是将肝实质细胞分泌的胆汁酸转运到胆管腔内排出。胆管细胞之间的紧密连接维持了胆管上皮的屏障功能,对胆汁酸的收集和排泄至关重要。研究者发现SARS-CoV-2感染降低了类器官中Claudin1的表达,提示胆管细胞的屏障功能可能被破坏。更重要的是,两个主要的胆汁酸转运蛋白,顶端钠离子/胆汁酸转运体(ASBT)和囊性纤维化跨膜电导调节(CFTR)的表达在SARS-CoV-2感染后显著下调。这些数据支持SARS-CoV-2感染可以通过下调胆管细胞中紧密连接形成和胆汁酸运输关键基因的表达水平,损伤胆管组织屏障和胆汁酸运输功能。提出COVID-19患者肝内病毒感染诱发胆管功能紊乱和胆汁积淤,进而导致肝脏损伤的可能性。新型冠状病毒(SARS-COV-2)感染和损伤肝脏中胆管上皮细胞
复旦大学 2021-04-10
ZnGeP2晶体的腐蚀剂与腐蚀方法
一种ZnGeP2晶体的腐蚀剂,由冰醋酸、氢氟酸、硝酸、碘和纯净水配制而成,冰 醋酸、氢氟酸、硝酸、纯净水的体积比为:冰醋酸∶氢氟酸∶硝酸∶纯净水=1∶2∶2∶ 1,碘的质量∶冰醋酸体积=4∶1。一种ZnGeP2晶体的腐蚀方法,使用上述腐蚀剂,工 艺步骤依次为:(1)腐蚀,将ZnGeP2晶片浸入腐蚀剂中,在超声波振荡下于常压、室 温腐蚀4~16分钟取出;(2)清洗,将从腐蚀剂中取出的ZnGeP2晶片浸入反应终止液 中摆动清洗终止反应,再用纯净水清洗至中性,所述反应终止液由质量浓度5%的NaOH 和质量浓度为3%的Na2S2O3配制而成,NaOH与Na2S2O3的体积比=1∶1;(3)干燥。
四川大学 2021-04-11
首页 上一页 1 2
  • ...
  • 30 31 32
  • ...
  • 68 69 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1