高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
技术需求,自然语言处理,文本信息提取算法,政策知识图谱、企业知识图谱
1、自然语言处理,文本信息提取算法。 2、政策知识图谱、企业知识图谱。
政和科技股份有限公司 2021-06-15
船舶动力设备振动主动控制技术
        技术成熟度:技术突破         针对船舶机械设备减振降噪需求,提出了结构振动信息作为性能指标的主动减振控制策略。解决了船舶复杂应用环境下,主动减振技术“减振不一定降噪”的难题。攻克超低频、高出力密度主动减振系统执行机构的分析方法和设计关键技术,研发了系列化的电磁式作动器和主被动复合减振器,应用于船舶主机、辅机和管路系统振动抑制。突破了现有主动执行机构低频作动能力的瓶颈,发明了准零刚度作动器,有效覆盖国外探测技术的频率下限,解决了新一代船舶对超低频线谱振动和水下辐射噪声控制的迫切需求。提出了稳定性高、收敛速度快、扩展性强的主动减振核心控制算法并形成工程应用软件。突破了参考输入线谱增强、多频振动均衡控制、控制输出饱和抑制等一系列核心关键技术,解决了主动减振技术实船应用的稳、快、准的难题。研发了首套兼具工作过程自监测、运行故障自诊断、控制效果自评估功能的集成化、模块化主动控制系统,实现了主动减振系统100%国产化。解决了船舶机械设备主动减振系统关键部件自主可控难题。         意向开展成果转化的前提条件:船舶机械设备减振降噪
哈尔滨工程大学 2025-05-19
一种基于PID算法控制的电磁直立车
本实用新型公开了一种基于PID算法控制的电磁直立车,包括车体,所述车体顶部设有蓝牙模块,所述蓝牙模块电性连接PCB控制电路板,所述PCB控制电路板设置在所述车体内部,且所述PCB控制电路板上设有PID控制器,所述PID控制器的一侧电性连接陀螺仪,所述陀螺仪一侧设有加速度传感器,所述加速度传感器电性连接所述PID控制器,所述PID控制器电性连接驱动电机,所述驱动电机设置在所述车体内腔的底部,且所述驱动电机设有两个,两个所述驱动电机的旋转轴分别朝向相反的方向,所述旋转轴上连接行驶轮,本实用新型简化直立车
安徽建筑大学 2021-01-12
基于分层智能搜索算法的玻璃切割优化软件
切割问题和装填问题在学术界属于一类经典的NP 难问题,它们有着众多的变种,例如:一维的背包问题,二维的矩形切割问题,三维的装箱问题等。其中以二维的场景应用最为广泛,相关求解算法可以作为玻璃、板材、管材、服装切割套料智能制造的算法内核。 本软件的主要用途是针对玻璃切割的场景提出求解多约束的矩形切割问题的分层智能搜索算法,为玻璃切割方案提供全局优化,实现原料利用率的最大化,在节约资源的同时提高产量。
华中科技大学 2022-03-28
一种基于遗传算法的矩形检测方法
本发明的涉及一种对图像中矩形进行检测的方法。本发明旨在 寻找图像中矩形的最佳四个顶点集合,首先对图像进行边缘检测,获 得由图像中所有边缘点组成的集合即边缘空间,然后用四个边缘点表 示一个矩形个体,简称为个体,通过计算四个边缘点之间连线的存在 性和夹角接近直角的程度来计算个体的适应度,选择适用度高的个体 进行交叉和变异操作来产生新一代的个体。通过多次选择、交叉和变 异操作最终找到组成矩形四个顶点的最佳集合。该方法基于遗
华中科技大学 2021-04-14
高性能电机及其健康状态监测系统研发技术
团队具备成熟的高性能电机研发能力,具备瞬态有限元仿真技术、多物理场联合仿真技术、场路耦合仿真技术,能够定制开发有刷/无刷直流、感应电机、电励磁/永磁同步等各类电机,助力多家企业实现核心电机自主化、国产化。 团队研发了基于空间磁场的高性能电机健康状态在线监测系统,能够实时监测电机健康状态,即使发现电机微小故障,有效提高电机可靠性。
重庆文理学院 2025-05-19
一种人参冻干工艺的优化技术
人参作为传统中药材,早在《神农本草经》中就被列为上品,具有“补中益气,养血安神,强壮体魄”的功效,长期以来在中医药中占据着重要地位,尤其在提升体力、增强免疫力等方面有显著作用。 随着现代技术的发展,冻干技术的应用为人参加工带来了革命性变化。通过低温和真空环境下的升华原理,冻干技术能够去除新鲜人参中的水分,最大限度保留其活性成分、营养物质和药效。这不仅延长了产品的保质期,还改善了产品的便捷性,便于储存和运输,适应了现代消费者的需求。 本项目专注于人参冻干技术的研发,旨在提高人参产品的质量与市场竞争力。冻干后的产品不仅保留了原有的药效和营养成分,还具有更长的保质期,能够广泛应用于人参粉、营养补充品、保健食品等多个领域。同时,项目优化了冻干工艺,提升了有效成分的提取率,确保最终产品在营养和药效上的最大保留。 通过技术创新与产业化应用,本项目将推动人参产业的现代化发展,提升人参附加值,满足国内外市场对高品质人参产品日益增长的需求,为行业带来更多发展机遇。 1. 目标市场与市场规模: 本项目主要面向国内外高端健康食品、保健品和营养补充品市场,重点关注中老年人、亚健康人群及健身爱好者。随着生活水平提高,年轻消费者也逐渐关注天然、绿色健康产品,冻干人参成为理想选择。全球人参市场年增长率约为5%-7%,冻干人参的潜力尤为巨大,特别是在高端健康领域。 2. 市场竞争预测: 目前,国内外已有企业涉足人参冻干技术,但大多数仍处于初步阶段,技术尚不成熟,且现有产品集中于中低端市场,冻干工艺不够精细,导致有效成分损失较大。竞争者包括传统人参生产商和新兴健康品牌。随着消费者对品质要求提升,市场将向高品质、高效能产品倾斜。本项目的冻干技术创新和产品高端化,使其具备强大竞争力,有望迅速占领高端市场份额。 3. 本项目核心竞争优势: 本项目的核心竞争优势在于冻干技术创新。相比传统工艺,项目技术能更好保留人参中的有效成分,提高营养价值和药效。产品形态多样(如粉末、颗粒、薄片等),满足不同消费者需求,提供便捷使用体验。项目在原材料采购、生产环节和质量控制上的优势,确保产品的高品质和稳定性。随着市场对高品质健康产品需求增长,本项目具备较强的技术壁垒和市场竞争力。
延边大学 2025-05-19
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
一种基于门限的低复杂度MPA算法
本发明的目的在于克服现有技术的不足,提供一种基于门限的低复杂度MPA算法, 该算法通过设置置信度门限来及时对可靠的码字进行译码,或对发送概率极低的码字进行 舍弃,从而有效地降低了原始MPA算法的复杂度。
电子科技大学 2021-04-10
首页 上一页 1 2 3 4 5 6
  • ...
  • 681 682 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1