高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
辽沈Ⅳ型育苗专用日光温室及其配套装备和技术研究与应用
 随着蔬菜产业的发展,蔬菜集约化育苗势在必行。然而在北方寒区采用连栋温室育苗耗能大、成本高,难以大面积推广;而采用传统日光温室育苗则采光差、光照不均匀,影响幼苗质量。因此研制出一种光照均匀、保温蓄热好的育苗专用日光温室及配套设备和技术,建立低成本节能日光温室集约化育苗技术体系,十分必要。本项目在国家和省部的资助下,历时十余年研制出育苗专用日光温室及配套设备和关键技术,应用效益显著。具体成果如下:     (一)主要技术内容和特点     1. 研制出育苗专用日光温室 首次完整创建了以冬至合理透光率和太阳能截获、合理热阻和保温比、合理蓄热体起始温度和蓄热量为核心的日光温室设计理论与方法,据此设计出第三代育苗专用节能日光温室,研制出由连贯间连接的育苗专用日光温室群,制定了建造技术规范。育苗专用日光温室采用短后坡、前坡双曲面和大屋面角设计,使室内采光均匀;而且较连栋温室降低成本50%,较第二代节能日光温室增光6%以上和增温5℃以上;夜间室内外温差35℃以上,可在-20℃以上地区不加温或-20~-30℃地区少加温进行果菜育苗。     2. 研制出日光温室蔬菜育苗专用配套设备与营养基质 创新研制出适用于日光温室钢骨架安装的单轨悬挂式室内喷淋机、三轨式新型立柱喷淋机、半地下式可移动育苗床架、便携式穴盘播种机等育苗配套设备,成本较连栋温室相应设备降低55%以上。研制出日光温室蔬菜育苗专用营养基质、低成本穴盘育苗营养母剂、椰糠营养基质和营养育苗块,较营养液育苗降低成本50%以上。     3. 研制出日光温室蔬菜穴盘育苗关键技术 研制出提高抗病性与壮苗指数的稀土壮苗剂和具有提高耐低温弱光能力与壮苗指数的钙素壮苗剂,黄瓜和甜瓜穴盘苗贴接和断根嫁接技术;研究确定了以光照度为核心的果菜类蔬菜育苗最佳环境管理指标。     4. 集成构建了日光温室主要果菜集约化节能育苗技术体系 集成本项目研制出的育苗专用日光温室、配套设备、育苗关键技术等,构建了我国北方寒区日光温室果菜集约化育苗技术体系,制订了日光温室蔬菜集约化穴盘育苗技术规程。应用本规程,较普通日光温室育苗提高壮苗指数18%以上,达到连栋温室育苗质量,但较连栋温室育苗成本降低60%以上、节能80%以上。
沈阳农业大学 2021-05-04
重载机械装备多缸协同控制液压伺服系统的开发与应用
大型重载机械装备是是我国基础设施、资源开发和国防建设急需的重大技术装备。这类装备具有重承载、强冲击和极端环境运行的特点,液力驱动工作中大功率传递和液-固耦合现象极为突出。 基于电液控制发明了阀控缸液压伺服系统的位置和压力主从控制方法,解决重载机械装备运行过程中位置和压力耦合干扰问题,实现多缸液压伺服系统位置和压力的精确控制。同时发明了液压滚切式金属板剪切机的液压系统,通过建立多变量解耦矩阵和多缸运动方程以及无节流损失的压力和位置双向精确控制方程,实现了液压泵、蓄能器组和伺服阀的同步控制,提高了阀控缸液压伺服系统的运动平稳性和可控性。提出多缸液压系统失稳判定方法,得到液压伺服系统稳定运行的必要条件,提高大型重载设备的稳定性。
太原科技大学 2021-05-04
生物质燃气锅炉的气-活性炭联产技术研究与应用
目前我国部分地区PM2.5雾霾等空气污染频频发生,为实现污染物总量控制目标、减少燃煤污染物排放,国内很多地区限制使用燃煤工业锅炉,这为生物质锅炉的发展提供了空间。与此同时,由于传统煤基活性炭原料(优质无烟煤和不粘煤)资源的不断减少及其不可再生性,造成了原料供应不足、生产成本提高的局面。本课题针对目前燃煤锅炉污染大、能耗高以及传统活性炭制备技术粗放、成本高的问题,开发一种新型生物燃气-活性炭联产技术,以木屑、木片、秸秆等农林废弃物为生物质燃料,通过高温气化转化为生物质可燃气,同时将所得生物质炭渣改性为具有高吸附性能的粒状或粉状活性炭,并将此气炭联产技术应用于实际燃煤锅炉改造,开发出融节能、减排及废弃物资源回收利用为一体的绿色生产技术。该技术不仅能排除生物质本身的缺陷, 扩大了农林废弃物的利用途径,而且生成了应用广泛、价值高的活性炭,做到了变废为宝,使得农林废弃物生物质的工业化、大规模、高效率利用成为可能。目前针对本课题已在实验室进行了初步的小试研究,在利用农林废弃物产生生物燃气的同时制得了生物炭,如下图所示。将结合企业实际需求进一步深入研究,并应用于实际。
同济大学 2021-04-11
赤眼蜂高效利用与生产关键技术研究及其大面积推广应用
吉林省所在地区是世界三大著名黄金玉米带之一,亚洲玉米螟[Ostrinia furnacalis(Guenee)]是该地区玉米生产上的最重要常发性害虫,每年可造成约10%的产量损失.松毛虫赤眼蜂(Trichogramma dendrolimi Matsumura)是该地区玉米螟卵期的重要寄生蜂.为了减少玉米螟为害所造成的产量损失,吉林省利用当地特有资源优势,以柞蚕卵作为中间寄主大量繁育松毛虫赤眼蜂,并进行了大面积田间推广应用,至今已有近30年历史.
吉林农业大学 2021-05-04
面向应用的高效有机太阳能电池关键材料与器件制备研究
项目成果/简介:作为一种新的太阳能电池电池技术,有机太阳能电池具有低成本、柔性、半透明、可大面积溶液印刷等优点;在应用方面,可与当前基于硅等的无机太阳能电池形成优势互补。特别指出的是,与钙钛矿太阳能电池相比,有机太阳能电池还具有环境友好的优点,在使用过程中以及使用后处理方面不会产生重金属污染,其所使用的少量有机材料都是可降解的有机染料类化合物。效率、成本和稳定性是所以太阳能电池能否应用的关键要素。有机太阳能的效率目前和其它最好的太阳能电池之间的差距正在迅速缩小,目前我们实验室已经获得超过 1515%的效率,是有机太阳能电池领域世界最高效率;成本方面,OPV具有巨大优势,有机材料分子结构多样性,成本低廉;寿命方面,因成本低廉,产业界对有机太阳能电池寿命的要求不如无机太阳能电池,10 年左右的寿命可以完全满足商业化应用,已有研究表明,OPV 寿命达到 5-7 年没有问题,随着研究深入,提高的 10 年以上会很快实现。 本项目围绕有机太阳能电池的关键材料开展系统研究,1)提出了新的材料设计理念,发展了系列具有独立自主知识产权的活性层材料;2)发展了成熟的高效率有机太阳能电池制备工艺技术,制备了系列高效率有机太阳能电池光伏器件,不断刷新领域内最高太阳能电池光电转化效率;3)制备了低成本、可溶液印刷柔性的透明电极,应用于有机太阳能电池,获得了与目前常规透明电极,如 ITO,完全相当性能。应用范围:目前有机太阳能电池正处在从实验室走向实际应用的黎明阶段,因其优点和特点,在可穿戴设备、建筑一体化等领域将会产生巨大的需求市场。当前国内外多家实验室已开展完全面向实际应用的研究开发,随着研究的不断深入,有机太阳能电池的商品化生产应用将会很快实现。效益分析:1. 具有完全自主知识产权的高效有机太阳能电池活性层材料,且合成简单,成本低; 2. 具有成熟的高效有机太阳能电池制备工艺; 3. 具有自主知识产权的低成本、高性能柔性透明电极,不仅完全适用有机太阳能电池,亦可广泛应用了其它相关领域。
南开大学 2021-04-11
中厚板热处理线常化控冷工艺的开发与应用研究
该项目是北京科技大学与舞阳钢铁有限责任公司合作完成的自选项目。是我国第一条自主设计和开发的宽厚板大型热处理线(常化+控冷),填补了国内空白。 为了提高中厚钢板连续热处理线的装备水平及制造能力,实现我国民用及军用高品质、高强度、高韧性钢板能够自主生产的战略目标,国家决定对原三板厂进行改造。该项目的研究开发和成功应用不仅适时结合国家改造的大需求,而且填补了国内空白,采用低碳微合金化国际先进技术,提高了产品性能的合格率、扩大了热处理钢板的厚度规格,解决了高强度结构钢强度偏低的问题,降低了碳当量,大大改善了钢材的焊接性能。主要技术亮点在于:   (1)通过技术集成,完成了宽厚板的常化+控冷生产线建设,其中常化+控冷技术属国际首创。(2)自主开发的辊底式热处理炉自动化控制系统(L0级,L1级,L2级)属国内首创。控制技术达到宽厚板热处理炉的国际先进水平,特别是L2级数学模型的应用完全打破了国外垄断的地位,达到国际领先水平。(3)在设计上对国内外辊底式热处理炉先进技术进行了集成优化,使炉温控制精度在±10℃以内,产品合格率达到96%以上。(4)该生产线运行稳定,安全可靠。该项目具有显著的经济效益与社会效益,已成功开发了多个高强度、高韧性产品,其中Q460E/Z35特厚钢板已应用于奥运场馆"鸟巢"工程中。
北京科技大学 2021-04-11
全断面隧道掘进装备载荷建模与数字化设计关键技术及应用
"本项目属工程装备设计制造技术领域。我国是地下施工最多,全断面隧道掘进装备需求量最大和发展速度最快的国家。由于引进装备不适应我国复杂多变的地质情况,导致可靠性差,严重影响施工效率与效益,因此亟需发展相关设计技术并自主研制。掘进装备的关键核心部件是刀盘,缺少地质适应性好与可靠性高的刀盘设计技术是困扰掘进装备自主研制的瓶颈问题。项目组围绕国家重大隧道工程需求,攻克了刀盘地质适应性与高可靠性设计关键技术,促进了我国掘进装备自主设计能力跨越式发展。 本项目技术发明一为提出了广谱地质适应性掘进载荷建模新理论。创建了掘进装备总载荷预测模型,突破了现有建模理论仅适用于单一地质的局限性,降低了总载荷预测误差,为刀盘地质适应性与高可靠性设计提供了载荷条件;本项目技术创新二为发明了软土类刀盘地质适应性设计新技术。建立了掘进装备刀盘高精度参数化建模新方法,实现了复杂地质条件下掘进过程全物理仿真及刀盘结构强度优化设计,突破了刀盘轻量化设计关键技术,降低了设计制造成本;本项目技术创新三为发明了硬岩类刀盘高可靠性设计新技术。提出了随机动态载荷作用下刀盘强度设计方法“
天津大学 2021-04-10
面向应用的高效有机太阳能电池关键材料与器件制备研究
作为一种新的太阳能电池电池技术,有机太阳能电池具有低成本、柔性、半透明、可大面积溶液印刷等优点;在应用方面,可与当前基于硅等的无机太阳能电池形成优势互补。特别指出的是,与钙钛矿太阳能电池相比,有机太阳能电池还具有环境友好的优点,在使用过程中以及使用后处理方面不会产生重金属污染,其所使用的少量有机材料都是可降解的有机染料类化合物。效率、成本和稳定性是所以太阳能电池能否应用的关键要素。有机太阳能的效率目前和其它最好的太阳能电池之间的差距正在迅速缩小,目前我们实验室已经获得超过 1515%的效率,是有机太阳能电池领域世界最高效率;成本方面,OPV具有巨大优势,有机材料分子结构多样性,成本低廉;寿命方面,因成本低廉,产业界对有机太阳能电池寿命的要求不如无机太阳能电池,10 年左右的寿命可以完全满足商业化应用,已有研究表明,OPV 寿命达到 5-7 年没有问题,随着研究深入,提高的 10 年以上会很快实现。 本项目围绕有机太阳能电池的关键材料开展系统研究,1)提出了新的材料设计理念,发展了系列具有独立自主知识产权的活性层材料;2)发展了成熟的高效率有机太阳能电池制备工艺技术,制备了系列高效率有机太阳能电池光伏器件,不断刷新领域内最高太阳能电池光电转化效率;3)制备了低成本、可溶液印刷柔性的透明电极,应用于有机太阳能电池,获得了与目前常规透明电极,如 ITO,完全相当性能。
南开大学 2021-02-01
大型船舶综合电力系统协同优化与智能运行关键技术及应用
2019年上海市科技进步一等奖 在复杂多变海况与恶劣运行环境中,大型综合电力系统各类型扰动和故障频繁,严重影响了大功率变频装置与高精密仪器的可靠运行,系统安全稳定问题远比陆地电网严峻,亟需突破解决。提高装备性能和系统调控水平,是保障我国由造船大国向造船强国转型升级的重大需求。围绕综合电力系统优化与智能运行技术难题,历经十余年的产学研攻关,取得了多项独创性技术成果: 1、发明基于多电平功率模块的大功率变频系统及自适应虚拟同步电机控制技术,研制国产5MW大功率多重优化控制变频装置。 2、首创多频带混合电力滤波器及参数动态优化技术,开发变压器可控预充磁装置,研制船舶电能质量诊断与协同优化控制系统。 3、提出大型船舶电站-电网自适应广域协调保护方法,研制协调保护装置与模糊多目标故障智能自愈系统。 4、发明船舶负载功率波动模糊分频与协同优化分配技术,提出综合电力系统分级协同稳定控制机制与方法,开发船舶能量动态智能优化管理系统。 项目获16项专利,成果整体达国际领先水平,打破了国外技术垄断与封锁,解决了我国民用船舶电力系统关键装备“卡脖子”的问题,有效支撑了综合电力系统的优质运行。成果已成功应用于“海洋981”半潜式钻井平台、“雪龙2”等综合科考船、大型箱船,其中“东方红3”科考船电网运行参数部分世界领先,获CCTV、新浪网等多家权威媒体报道。项目核心装备与系统打通了高技术船舶上下游产业链,推动了上海船舶工业高端化转型与发展,近三年新增产值10.39亿、利润1.48亿、利税0.5亿,衍生技术已拓展应用至多个配电网示范工程。 图 2 自主优化控制大功率变频装置 图 3 混合滤波器实物图  图 4 电能质量主动优化控制系统 图 5   智能保护与自愈系统现场应用及测试
上海交通大学 2021-05-11
光谱型共聚焦位移传感器 及形貌扫描技术的开发与应用
成果介绍传统解决方案光源、光谱仪、共焦光路等各自独立,体积大、装配繁琐;All-in-one 高集成一体化光谱共聚焦传感器方案;光源光路、共聚焦光路和光谱分析光路一体化集成;控制电路、信号处理分析电路一体化集成;测量结果显示输出一体化集成;高可靠、高精度、低装配要求、低空间占用;紧凑型光路及关键配件(如物镜等)自主设计方案;三维扫描系统及配套面型重构算法、特征提取算法;后期将开发更先进的线光源激发共聚焦测量系统。技术创新点及参数非接触测量,完美避免工件表面划伤;广泛适用于各种材料表面测量(不透明/透明/半透明、液体等);待测工件颜色不敏感;极高的位置变化测量精度以及高的表面扫描分辨率;点成像方式,不存在通常3D扫描仪的遮挡效应;可实现大表面倾角处的位置测量;可实现多层工件(透明/半透明)各界面处的形貌扫描;无激光光源安全问题。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 73 74 75
  • ...
  • 553 554 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1