高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
聚醚-丙烯酸酯新型双功能聚合物电解质
研发内容:聚醚-丙烯酸酯新型双功能聚合物电解质。 主要性能:耐受氧化电压为 4.5 伏。 
中国科学院大学 2021-04-13
一种荆芥内酯对溴苯甲酸酯及其制备工艺和用途
【发 明 人】张丽;陈佩东;丁安伟;曹雨诞;单鸣秋;姚卫峰【技术领域】本发明涉及一种荆芥内酯对溴苯甲酸酯及其制备工艺和用途,属于药物制剂技术领域。【摘要】本发明公开了一种荆芥内酯对溴苯甲酸酯及其制备工艺和用途,分子式为C17H17BrO4,熔点为179-181℃,其比旋度为本发明还公开了它的提取方法,以及在制备抗流感病毒药物中的应用。
南京中医药大学 2021-04-13
单嘧磺隆和单嘧磺酯合成工艺的绿色化研究
设计废水处理方案时,采用了“生产工艺废水套用-蒸发回用-结晶”这样的一个内循环过程,不仅大大降低了生产工艺废水的处理成本,而且回收绝大部分的水以及无机盐。可以实现水回用,基本达到废液“零排放”,满足了节能环保的要求。 一、项目分类 显著效益成果转化 二、成果简介 单嘧磺隆和单嘧磺酯是超高效、广谱、安全的绿色化农药品种,分别于2007、2013年通过农业部审核,获得农业部正式登记证。其中单嘧磺隆适用于小麦、谷子、玉米等主要作物,尤其是作为谷子除草剂,它的作用无可替代,我国玉米种植面积为5.1亿亩,小麦4.5亿亩,谷子3000万亩,市场相当广阔。目前单嘧磺隆、单嘧磺酯原药生产废水量较大,亟需对它们的合成工艺进行更深入的研究,以实现合成工艺绿色化,使整个工艺废水达到“零排放”。 项目特色和创新之处:设计单嘧磺隆生产工艺路线时,对氨解工段反应进行改进,用水代替有机溶剂作为反应溶剂,使生产工艺更为绿色化;对氨基酯工段后处理进行了改进,通过蒸馏回收了丙酮;对关环工段后处理进行了改进,在近回流情况下通过水萃取除掉无机盐,水可以通过蒸发回用,既保证了中间体的纯度,又减少了废水排放。设计废水处理方案时,采用了“生产工艺废水套用-蒸发回用-结晶”这样的一个内循环过程,不仅大大降低了生产工艺废水的处理成本,而且回收绝大部分的水以及无机盐。可以实现水回用,基本达到废液“零排放”,满足了节能环保的要求。该方法操作简便,且不需要增加额外的设备,运行成本低。 社会贡献和经济效益:可降低单嘧磺隆生产工艺废水的处理成本,而且回收绝大部分的水、无机盐以及部分原料,能基本达到废液“零排放”。同时,可能将该方法应用于同类产品单嘧磺酯等的生产工艺废水处理中。该项目不仅节约成本,更重要的是它基本实现生产工艺“绿色化”,这对单嘧磺隆、单嘧磺酯的推广具有非常重要的意义。
南开大学 2022-07-29
年产2万吨非石油路线合成丙烯酸丁酯
丙烯酸丁酯是重要的基本有机化工原料之一,其衍生产品成千上万,在精细化工的应用中占有相当重要的地位,几乎涉及到工业领域各部门,在涂料、粘合剂、医学、皮革加工、造纸、油漆、化纤等行业得到日益广泛的应用。目前国内外都是石油路线合成,由于原料供应紧张,生产成本高。 课题组开发了非石油路线绿色清洁生产新技术,过程安全、环保,成本降低40%以上,产品质量优异,优级品含量大于99.5%,具有很强的国际市场竞争力。同时,利用了CO2废气为原料,对节能、减排,实现绿色化、生态化具有重要意义。 年产2万吨丙烯酸丁酯,总投资8448 万元。
华东理工大学 2021-04-13
年产10万吨非石油路线合成丙烯酸及酯
丙烯酸及酯是重要的基本有机化工原料之一,其衍生产品成千上万,在精细化工的应用中占有相当重要的地位,几乎涉及到工业领域各部门,在涂料、粘合剂、医学、皮革加工、造纸、油漆、化纤等行业得到日益广泛的应用。目前国内外都是石油路线合成,由于原料供应紧张,生产成本高。 课题组开发了非石油路线绿色清洁生产新技术,过程安全、环保,成本降低40%以上,产品质量优异,优级品含量大于99.5%,具有很强的国际市场竞争力。同时,利用了CO2废气为原料,对节能、减排,实现绿色化、生态化具有重要意义。 年产10万吨非石油路线合成丙烯酸及酯,总投资41495万元。
华东理工大学 2021-04-13
一种微通道在线制备过氧特戊酸叔丁酯的方法
本发明公开了一种微通道在线制备过氧特戊酸叔丁酯的方法,属于精细化工合成技术领域,所述方法为:以特戊酸酐和叔丁基过氧化氢为原料,在硫酸催化下在微通道反应器中连续制备,淬灭反应后通过在线分离得到所述过氧特戊酸叔丁酯。本发明采用微通道合成及在线分离技术,简化操作流程,强化反应过程传热传质,提升反应效率并拓宽安全操作条件边界;最小化不稳定的有机过氧化物存量,缩短反应停留时间,相比于传统间歇式合成工艺过程安全性得到显著提升。
南京工业大学 2021-01-12
茶树咖啡碱合成酶基因启动子TCSP及其应用
项目成果/简介:本发明提供茶树咖啡碱合成酶基因启动子TCSP及其在制备转基因植物中的应用.本发明以茶树DNA为模板,用GenomeWalking方法克隆得到茶树TCS基因启动子序列,然后利用Gateway技术构建重组植物表达载体pKGWFS7TCSP,采用农杆菌介导的烟草遗传转化,以表达GUS基因的方式进行启动子活性功能验证.本发明首次从茶树中克隆出特异性咖啡碱合成酶基因启动子TCSP,并验证了其活性,对于揭示茶树咖啡碱合成的机理,生物调控茶树咖啡碱的含量具有重要意义.
安徽农业大学 2021-04-10
解析致病菌细胞壁成分胞壁酸翻转酶结构功能机制
中国科大陈宇星教授、周丛照教授和孙林峰教授课题组合作阐明了金黄色葡萄球菌(Staphylococcus aureus)胞壁酸(WTA)翻转酶TarGH转运WTA的机制和TarGH特异性抑制剂Targocil的抑制机制。该研究成果在线发表在微生物领域专业杂志mBio上。耐甲氧西林金黄色葡萄球菌(MRSA)是主要的临床致病菌之一,其引发的感染难以治愈甚至可能致死。由于近年来抗生素滥用,出现了对所有的β-内酰胺类药物都具有抗性的MRSA菌株。研究表明S. aureus细胞壁主要成分WTA是引起耐药性的关键因素之一。在革兰氏阳性菌中,WTA是一类共价连接在肽聚糖上的阴离子多聚物。WTA在细菌分裂、生物膜形成、宿主定殖以及细菌感染等过程中起着重要作用。因此,WTA合成路径中的关键酶是新型抗菌药物的重要靶点。在S. aureus中,WTA合成前体是N-乙酰葡糖胺修饰的多聚核糖醇长链,其通过共价键连接在锚定在细胞膜上的脂质载体Und-PP上。该Und-PP连接的多聚核糖醇长链前体先在细胞内完成合成,最后通过ABC转运蛋白TarGH翻转出细胞膜。作为最具潜力的抗生素靶标之一,TarGH及其抑制剂得到广泛研究。先导化合物小分子Targocil是近期被鉴定出来特异性抑制TarGH效率较高的抑制剂,但是其抑制的分子机制并不清楚。为阐明TarGH转运WTA的机理以及Targocil的抑制机制,作者用冷冻电镜方法,解析了金黄色葡萄球菌WTA翻转酶TarGH的同源蛋白,来自Alicyclobacillus herbarius菌的TarGH结构。其同源性为50%。TarGH结构总体分辨率为3.9 Å,其核心结构区域分辨率达到3.6Å。由于未结合ATP,TarGH结构处于开口朝向细胞内的构象状态。基于结构,作者计算出了底物转运通道,通过对组成通道的氨基酸残基性质分析并结合生理实验,阐明了底物特异性识别机制。通过结构比对作者提出TarGH及其同源蛋白利用“曲柄连杆”原理来实现底物转运的分子机制。具有类似结构特点的ABC转运蛋白都可以利用这一机制通过相对微小的总体构象变化转运较大的底物。作者进一步通过生化实验和计算机模拟确定了Targocil结合TarGH的精确位点,并阐明了其抑制TarGH转运胞壁酸的分子机制。
中国科学技术大学 2021-04-10
重组大肠杆菌生产磷脂酶D及转酯化产品开发
"磷脂酶 D (PLD)是一类具有水解作用和磷酰基转移作用的酶, 在磷脂改性方面发挥着重要作用。它可以将大量磷脂酰胆碱(PC) 催化合成为自然界稀有的磷脂质,如磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)和磷脂酰甘油(PG)等,合成的磷脂质在医药和食品工业具有很大的应用前景。但由于来源不足和价格高,PLD的工业应用一直受到限制。本项目通过基因工程和微生物发酵技术,解决了PLD工业化应用中难表达和表达量不足的难题,利用重组大肠杆菌发酵实现了PLD的高水平表达,其酶活为106 U•L-1,产量为748 mg•L-1,分别比目前报道的最高水平提高了100倍和20倍;同时,本项目还建立了一种简单有效提取重组PLD的方法,可望大大降低PLD的生产成本。本技术先进,应用前景看好,如按106 U•L-1的发酵水平生产,成本约100元人民币/1000 U,目前市场售价在3000-6000元/1000 U,利润空间很大。 "
厦门大学 2021-04-10
一种α-半乳糖苷酶软胶囊饲料添加剂
其他成果/n本发明属于饲料添加剂技术领域,具体涉及一种α-半乳糖苷酶软胶囊饲料添加剂及其制备方法。该方法包括以下步骤:1)向磷酸盐缓冲溶液中加入α-Gal,然后加入β-CD,再经过均质后静置反应,至反应终点,得到α-Gal—β-CD添加液;2)将B型明胶加入水中,充分溶胀后加入甘油、防腐剂和二氧化钛,混合均匀进行胶化,得到胶料;3)灌装。通过本发明得到的软胶囊添加剂利用环糊精抑制剂对α-Gal的抑制作用,使动物饲料中的α-Gal酶活,经历一个先低后高的过程,从而使饲料中的α-Gal在更合适的消化时期发挥催化作用。
武汉轻工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 32 33 34
  • ...
  • 48 49 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1