高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
单芯片高光束质量光子晶体激光器
可以量产/n波长范围905-1064nm、水平、垂直发散角<10度;直流输出功率>5W;窄脉冲输出功率>20W;光子晶体激光器模块窄脉冲输出功率>130W;并与传统半导体激光器工艺相兼容。此外还开展了808nm、980nm和1064nm等波段光子晶体激光器研究。“先进半导体光子晶体激光器技术研究”获得2013年度北京市科学技术奖二等奖,光子晶体高功率高亮度激光器被评为“2014中国光学重要成果”。市场预期:半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核
中国科学院大学 2021-01-12
多通道GHz近红外单光子探测器
基于InGaAs-APD的超灵敏高速光电探测模块,探测波段覆盖900 -1700 nm,探测效率最高可达25%。采用先进的正弦频谱滤波技术,支持GHz以上的单光子探测。此外,得益于先进的噪声抑制和弱信号处理技术,GHz 单光子探测器在如此高的工作频率下依然可以保持5×10-6/pulse的暗计数水平,以及小于5%的后脉冲概率。而多通道GHz单光子探测器的集成,可实现高速的光子数可分辨探测,拓展量子探测器的动态范围。 相关技术指标: 通道数: ≥4 工作频率:1-2.5GHz 探测效率:1-25% 连续可调 暗计数: 工作频率1-1.5GHz:≤ 5×10-6/pulse 工作频率2-2.5GHz:≤ 1×10-5/pulse 后脉冲: ≤ 5% 死时间: 3 ~ 10 ns (暗计数后脉冲指标均在10%探测效率下测得) 技术创新点: 国际上首次提出“一种低时间抖动低噪的吉赫兹单光子探测方法”,通过频谱分析的方法将低通滤波和平衡相结合,实现了高速高性能InGaAs APD单光子探测,被国内外单光子探测领域的专家同行广泛引用。基于该技术所研制的GHz单光子探测器通过华东电子测量仪器研究所光电计量校准中心(国防科技工业光电子一级计量站)鉴定检测,性能指标达到国际同类仪器先进水平。“单光子探测关键技术与仪器开发”获2012年上海市科技发明二等奖(第十完成人)此外,在此基础上,将室温单光子探测的速率提升到GHz以上,与国际水平相对比,工作频率提升到了1.5GHz,后脉冲误计数概率亦有所下降,探测效率为21%时,后脉冲概率仅为1.4%。
上海理工大学 2023-08-08
声子拓扑材料的理论研究方面重要进展
课题组采用基于密度泛函理论的晶格动力学方法研究了碲化镉(CdTe)材料的声子谱(见图1(a)),通过系统分析发现在具有闪锌矿结构的II-VI半导体碲化镉中存在理想的第二类外尔声子(见图1(b)),并且发现这样的准粒子激发发生于声学支和光学支的交汇处。课题组随后根据二阶力常数矩阵构造类似于电子系统的Wannier紧束缚Hamiltonian,从而可以
南方科技大学 2021-04-14
中国科大实现高效的高维量子隐形传态
量子隐形传态是建立远距离量子网络的关键技术之一。相比二维系统,高维量子网络具有更高的信道容量、更高的安全性等优点,受到人们的广泛关注。如何实现高效的高维量子隐形传态,从而实现高效的高维量子网络是当前量子信息领域的研究热点之一。 为了实现高维量子通信,李传锋、柳必恒等人从2016年开始采用光子的路径自由度编码,解决了路径比特的相干性问题[PRL 117, 220402 (2016)],制备出了高保真度的三维纠缠态[PRL 117, 170403(2016)];解决路径维度扩展问题,实现了32维量子纠缠态[PRL 125, 080503 (2020)];解决路径自由度的传输问题,实现了高维量子纠缠态在11公里光纤中的有效传输[Optica 7, 738 (2020)]等。研究组从2017年起开始了高维量子隐形传态的实验研究。然而理论研究表明,在线性光学体系中,必须采用辅助粒子才能实现高维量子隐形传态。 为了实现高维量子隐形传态,研究组首先巧妙的提出了纠缠辅助的方式,利用log2d-1个辅助纠缠光子对就可以高效的实现d维的量子隐形传态,从而解决了资源消耗问题。然后实验上利用主动反馈技术实现路径间的相位锁定,干涉可见度在45小时内保持在0.98的水平,从而利用六光子系统实现了三维的量子隐形传态。研究组对三维量子隐形传态过程做了过程层析,保真度达到0.596,以7个标准差超过了经典极限值1/3,证实了三维量子隐形传态过程的量子特性。高效的高维量子隐形传态的实现为构建高效的高维量子网络打下坚实的基础。
中国科学技术大学 2021-02-01
中国科大实现高效的高维量子隐形传态
项目成果/简介:量子隐形传态是建立远距离量子网络的关键技术之一。相比二维系统,高维量子网络具有更高的信道容量、更高的安全性等优点,受到人们的广泛关注。如何实现高效的高维量子隐形传态,从而实现高效的高维量子网络是当前量子信息领域的研究热点之一。 为了实现高维量子通信,李传锋、柳必恒等人从2016年开始采用光子的路径自由度编码,解决了路径比特的相干性问题[PRL 117, 220402 (2016)],制备出了高保真度的三维纠缠态[PRL 117, 170403(2016)];解决路径维度扩展问题,实现了32维量子纠缠态[PRL 125, 080503 (2020)];解决路径自由度的传输问题,实现了高维量子纠缠态在11公里光纤中的有效传输[Optica 7, 738 (2020)]等。研究组从2017年起开始了高维量子隐形传态的实验研究。然而理论研究表明,在线性光学体系中,必须采用辅助粒子才能实现高维量子隐形传态。 为了实现高维量子隐形传态,研究组首先巧妙的提出了纠缠辅助的方式,利用log2d-1个辅助纠缠光子对就可以高效的实现d维的量子隐形传态,从而解决了资源消耗问题。然后实验上利用主动反馈技术实现路径间的相位锁定,干涉可见度在45小时内保持在0.98的水平,从而利用六光子系统实现了三维的量子隐形传态。研究组对三维量子隐形传态过程做了过程层析,保真度达到0.596,以7个标准差超过了经典极限值1/3,证实了三维量子隐形传态过程的量子特性。高效的高维量子隐形传态的实现为构建高效的高维量子网络打下坚实的基础。
中国科学技术大学 2021-04-11
燃酒槽锅炉运行性能热态的试验研究
针对酒糟的燃料特点,在研究其燃烧机理的基础上,开发了一种燃酒糟锅炉,并对燃酒糟锅炉炉内空气动力场布置对锅炉燃烧及效率的影响、燃酒糟锅炉的实际运行性能进行了热态试验研究,为燃酒糟锅炉以及其它燃生物质锅炉的优化设计和运行提供了可靠依据。
上海理工大学 2021-01-12
一种混合光子晶体及其制备方法与应用
本发明公开了一种混合光子晶体及其制备方法与应用,该混合光子晶体包括聚乙二醇双丙烯酸酯反蛋白石骨架及填充于该骨架孔隙中的甲基丙烯酸酯明胶和磁性纳米粒子;制法为采用二氧化硅胶体微球作为模板,加入预凝胶A反应、聚合后,去除二氧化硅胶体微球,制得聚乙二醇双丙烯酸酯反蛋白石骨架,随后将预凝胶B加入骨架中反应、聚合后,即可。该混合光子晶体作为载体应用于耐药细胞的检测。本发明的显著优点为该混合光子晶体稳定性强,具有优越的生物兼容性和磁性响应性;制法简单,可操作性强,成本低,环境友好;应用于耐药细胞的检测,其表面负载叶酸,能够特异、灵敏、简单、有效地抓捕到髓性白血病耐药细胞。
东南大学 2021-04-11
关于激光驱动光子对撞机的新方案
首次从理论上系统阐明了微通道结构靶中,纵向电场主导了电子的加速过程,同时电子的横向加速可以得到有效的抑制,因此可以获得高准直性的电子束,当这些电子束在横向场中的相位发生反转时,电子就会在管道边界处产生强伽马辐射。由于电子的发散角决定了伽马辐射的发散角,因此可以获得准直性非常好的γ-ray辐射源。数值模拟中10PW激光所能获得的发散角小于3度,亮度比之前研究报道结果高出两个数量级的伽马辐射源。图1. 激光驱动光子对撞机产生正负电子对的方案设计图2. 本方案可以获得高出之前2-3量级的伽马光源亮度 本工作即基于以上研究成果,将该超高亮度的伽马射线应用于光子对撞机。理论计算结果表明,该方案可以获得超高信噪比(>1000:1),且每一发正负电子对信号(>1e8)远高于现有测量技术的探测极限。因此,通过该方案可以在实验室中验证光子互作用过程中由能量到物质的转换过程,将提供激光驱动光子对撞机研究的新途径,也将极大的促进双光子BW物理的发展。未来有望依据本方案建设基于重频拍瓦飞秒激光的高亮度伽马源及其应用装置。
北京大学 2021-04-11
氮化硅基光子集成技术及关键器件
项目采用了中山大学自主研发的低损耗低应力超低温氮化硅材料平台,研制了一系列光子集成的关键 器件
中山大学 2021-04-10
一种光子晶体薄膜、其制备方法及应用
本发明公开了一种光子晶体薄膜、其制备方法及应用。光子晶 体薄膜包括 Fe3O4 纳米粒子和聚丙烯酰胺水凝胶,所述 Fe3O4 纳米粒 子均匀分散于聚丙烯酰胺水凝胶中,浓度在 1mg/ml~50mg/ml 之间。 其制备方法如下:(1)将 Fe3O4 纳米粒子、丙烯酰胺、甲叉丙烯酰胺和 光引发剂均匀分散于有机溶液中,得到水凝胶光子晶体前体的悬浊液; (2)将凝胶光子晶体前体的悬浊液铺设成 150~300μm 的薄膜;加载
华中科技大学 2021-01-12
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 16 17 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1