高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
三维非硅微纳集成制造技术
随着支配半导体技术数十年的摩尔定律日益接近其发展极限,多种功能器件集成被认为是超越摩尔定律延续集成电路发展进程的重要途径之一,这就需要能够满足多种功能器件高密度集成的制造技术。多元兼容集成制造技术就是为此而开发的,该技术通过在更大范围内优选结构/功能材料组合,开发异质集成制造工艺,大大拓展了功能微器件创新设计和制造的腾挪空间。经过多年探索,目前已形成了涵盖金属、聚合物、陶瓷、复合材料的MEMS异质异构制造技术体系,并在多种类型功能器件研发中发挥了关键作用,初步展现了其基础性支撑作用,相关技术获得2016年度上海市技术发明一等奖。 微系统集成发展趋势 多元兼容集成制造技术  获奖情况 上海市技术发明一等奖2016年团队获奖 国家技术发明二等奖2008年 上海市技术发明一等奖2007年 超薄超快高热流密度微通道散热器 上海交通大学团队在长期研究经验和技术积累基础上,创造性地提出了不同高热导率材料组合构造的复合结构微通道散热器设计方案,并基于多元兼容集成制造技术完成了多种尺寸样品研制,其中,热源面积与常用功率芯片尺度相当的超薄散热器冷却能力达到800W/cm2以上,在保留传统微通道散热器良好系统兼容性和适用性的基础上达到了相当高的散热能力水平,为解决高功率芯片系统超高热流密度散热问题提供了一个深具可行性的解决方案。 高温薄膜温度传感器研究  发动机燃烧室等极端恶劣环境下(高温、强振动、强腐蚀等)的工作参数现场监测对传感器技术是严峻挑战,国内外研究广泛。交大团队基于特种材料微纳集成制造技术的长期积累,在高温绝缘薄膜材料、多层薄膜应力调控、曲面图形化和高温敏感介质等技术上取得了一定突破,成功开发了多种可与现场结构共型的高温薄膜传感器,具有体积小、环境扰动小、响应快、灵敏度高、可分布式安置等优点,该团队已经掌握了温度、应力/应变、热流等多种高温状态参数测量技术,适用温度在800-1300℃之间。 薄膜绝缘电阻随温度的变化及测试结构 高温薄膜温度传感器制造及曲面图形化技术 薄膜温度传感器在发动机不同部位测温需求 无线温度传感器测温系统 高性能转接板 基于转接板的多芯片封装是2.5D高密度集成最具可行性的方案之一。但是传统的硅转接板性价比不高,阻碍了广泛应用。上海交大团队基于非硅微加工技术的长期积累,突破了硅转接板绝缘层完整性和再分布层热隔离的难题,成功研制了漏电流极低的低成本高性能硅转接板。此外,还开发了复合材料非硅转接板,TCV陶瓷转接板,TGV玻璃转接板等各种三维封装基板,实验室能够针对不同类型器件三维高密度封装的具体要求,定制开发不同功能的专用转接板,为多功能、高密度、高功率、低成本封装提供个性化解决方案。 TSV-3D 高密度封装概念图  金属-聚合物-纳米复合材料非硅基转接板实物图片
上海交通大学 2021-05-11
微纳复合结构富锂锰基正极材料
"近年来,锂离子电池在智能电网、航空航天和军事储能等高能耗新能源领域的应用不断扩展,现有商用正极材料体系(包括层状结构的镍钴锰酸锂、尖晶石结构的锰酸锂和橄榄石结构的磷酸铁锂)的实际比容量已经接近各自的理论极限值,无法满足日益增长的能量密度需求。富锂锰基正极材料不仅具有高的比容量(250 mA h/g)和能量密度(1000 Wh/kg),而且其较低的钴和镍含量能够有效降低电池的成本。 本项目主要通过构筑缺陷来增强富锂锰基正极材料的电化学性能,实现高的首圈库伦效率、倍率性能和循环稳定性,提升富锂锰基正极材料整体性能,为其商业化应用打下基础。 "
厦门大学 2021-04-10
三维非硅微纳集成制造技术
项目成果/简介:随着支配半导体技术数十年的摩尔定律日益接近其发展极限,多种功能器件集成被认为是超越摩尔定律延续集成电路发展进程的重要途径之一,这就需要能够满足多种功能器件高密度集成的制造技术。多元兼容集成制造技术就是为此而开发的,该技术通过在更大范围内优选结构/功能材料组合,开发异质集成制造工艺,大大拓展了功能微器件创新设计和制造的腾挪空间。经过多年探索,目前已形成了涵盖金属、聚合物、陶瓷、复合材料的MEMS异质异构制造技术体系,并在多种类型功能器件研发中发挥了关键作用,初步展现了其基础性支撑作用,相关技术获得2016年度上海市技术发明一等奖。微系统集成发展趋势多元兼容集成制造技术 获奖情况上海市技术发明一等奖2016年团队获奖国家技术发明二等奖2008年上海市技术发明一等奖2007年超薄超快高热流密度微通道散热器上海交通大学团队在长期研究经验和技术积累基础上,创造性地提出了不同高热导率材料组合构造的复合结构微通道散热器设计方案,并基于多元兼容集成制造技术完成了多种尺寸样品研制,其中,热源面积与常用功率芯片尺度相当的超薄散热器冷却能力达到800W/cm2以上,在保留传统微通道散热器良好系统兼容性和适用性的基础上达到了相当高的散热能力水平,为解决高功率芯片系统超高热流密度散热问题提供了一个深具可行性的解决方案。高温薄膜温度传感器研究 发动机燃烧室等极端恶劣环境下(高温、强振动、强腐蚀等)的工作参数现场监测对传感器技术是严峻挑战,国内外研究广泛。交大团队基于特种材料微纳集成制造技术的长期积累,在高温绝缘薄膜材料、多层薄膜应力调控、曲面图形化和高温敏感介质等技术上取得了一定突破,成功开发了多种可与现场结构共型的高温薄膜传感器,具有体积小、环境扰动小、响应快、灵敏度高、可分布式安置等优点,该团队已经掌握了温度、应力/应变、热流等多种高温状态参数测量技术,适用温度在800-1300℃之间。薄膜绝缘电阻随温度的变化及测试结构高温薄膜温度传感器制造及曲面图形化技术薄膜温度传感器在发动机不同部位测温需求无线温度传感器测温系统高性能转接板基于转接板的多芯片封装是2.5D高密度集成最具可行性的方案之一。但是传统的硅转接板性价比不高,阻碍了广泛应用。上海交大团队基于非硅微加工技术的长期积累,突破了硅转接板绝缘层完整性和再分布层热隔离的难题,成功研制了漏电流极低的低成本高性能硅转接板。此外,还开发了复合材料非硅转接板,TCV陶瓷转接板,TGV玻璃转接板等各种三维封装基板,实验室能够针对不同类型器件三维高密度封装的具体要求,定制开发不同功能的专用转接板,为多功能、高密度、高功率、低成本封装提供个性化解决方案。TSV-3D 高密度封装概念图 金属-聚合物-纳米复合材料非硅基转接板实物图片知识产权类型:发明专利 、 软件著作权 、 集成电路布图设计技术先进程度:达到国内领先水平成果获得方式:独立研究获得政府支持情况:国家级
上海交通大学 2021-04-10
金刚石导丝模微纳制造技术
本项目将研究CVD金刚石厚膜的制备技术,导丝模的超声微纳加工技术,最终制作出合格的CVD金刚石导丝模,内孔尺寸公差<0.1微米,内孔和外圆的同心度要求小于5mm,内孔表面粗糙度Ra<0.01mm,达到国际先进水平。 本项目涉及金刚石厚膜的制备到CVD金刚石导丝模的关键工艺,项目成功后,将研发成功具有我国自主知识产权的金刚石导丝模,对我国模具产业和精密加工技术的发展具有重要的推动作用。   应用范围: 该产品应用于电火花线切割机床上使用,可以保证电火花线切割的质量和工件的加工精度。  
北京交通大学 2021-04-13
微纳复合结构富锂锰基正极材料
近年来,锂离子电池在智能电网、航空航天和军事储能等高能耗新能源领域的应用不断扩展,现有商用正极材料体系(包括层状结构的镍钴锰酸锂、尖晶石结构的锰酸锂和橄榄石结构的磷酸铁锂)的实际比容量已经接近各自的理论极限值,无法满足日益增长的能量密度需求。富锂锰基正极材料不仅具有高的比容量(250 mA h/g)和能量密度(1000 Wh/kg),而且其较低的钴和镍含量能够有效降低电池的成本。本项目主要通过构筑缺陷来增强富锂锰基正极材料的电化学性能,实现高的首圈库伦效率、倍率性
厦门大学 2021-01-12
微纳材料表面纳米包覆技术和装备
微纳材料表面纳米包覆是提升其功能特性的关键,是微纳制造研究领域的国际前沿,亦是航空航天、能源环保、发光显示等领域的共用技术。纳米包覆面临着精度不可控、不均匀、不致密等“顽疾”。团队提出多场耦合克服微纳材料内聚力的离心流化策略,保障了微纳材料充分分散包覆后的固有物化特性;揭示离心压差补偿的动态包覆机理,实现了可控致密的均匀包覆层制备;提出行星流化的微纳材料分散策略,国际首创行星流化原子层沉积装备,批量一致性达99%以上。申报技术受到包括美国斯坦福大学、阿贡国家实验室等机构,美国、德国、加
华中科技大学 2021-04-14
一种逐点扫描数字微镜阵列相机
本发明提出一种逐点扫描数字微镜阵列相机。该相机包括:物体光源、透镜组、DMD阵列、感光片、A/D转换器、DSP处理器组成。透镜组将景物光线投向DMD阵列上面,通过控制DMD阵列上面数字微镜逐点翻转,实现对景物光线的逐点扫描。DMD阵列然后将逐点扫描后的景物光线反射到感光片上成像,通过A/D转换器将每个像素上光电信号转变为数码信号,再经过DSP处理成数码图像,存储到存储介质当中。本发明利用DMD阵列的逐点扫描提高了成像的速度,节省拍摄时间。
四川大学 2016-09-29
关于微腔表面非线性光学的研究
北京大学物理学院肖云峰教授与龚旗煌院士领导的研究团队在微腔非线性光学研究取得重要进展:首次实现有机分子修饰的二氧化硅光学微腔的高效三次谐波产生,比此前报道的二氧化硅微腔转换效率提高了四个量级,接近晶体微环腔三次谐波的最高转换效率。成果被《物理评论快报》以封面及编辑推荐形式亮点报道:Phys. Rev. Lett. 123, 173902 (2019)。论文题为“Microcavity Nonlinear Optics with an Organically Functionalized Surface” (https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.173902)。左图:二氧化硅微腔表面修饰有机共轭分子;右图:实验测得的激发光和三次谐波光谱图 三阶非线性光学效应是现代光学研究和应用中最重要的非线性光学过程之一,被广泛应用于实现光频梳、全光开关和量子光源等。二氧化硅回音壁微腔由于具有超高的品质因子和成熟的制备工艺,已经成为是现代光子学研究的重要器件。然而,由于材料的限制,二氧化硅三阶光学非线性响应较弱于多数晶体材料,这严重地制约了二氧化硅微腔器件的性能。另一方面,有机共轭小分子具有离域的电子系统,在光场激发下,离域电子表现出很强的非谐振动,从而具有很高的非线性响应系数。同时,回音壁微腔的表面倏逝场为微腔与外界物质相互作用提供天然的通道。因此,采用表面修饰技术,光学微腔和高非线性响应的有机分子形成连结;有机分子通过表面倏逝场作用,有效地调控微腔系统的非线性效应,从而提高微腔器件的性能甚至可能突破微腔材料的限制。 在该项工作中,研究团队通过采用两步反应法,实现了二氧化硅微腔表面均匀地修饰有机分子层,既有效增强了微腔表面三阶非线性系数,同时保持了腔的高品质因子特性。实验中,研究者采用最近发展的动态相位匹配技术,即基于腔克尔效应和热效应补偿非线性频率转换过程中本征的相位失配,实现泵浦光和谐波频率与热腔模频率的共振匹配,最终实验上观测到三次谐波转换效率达到1680%/W2,比之前报道的二氧化硅微腔的最高转换效率提高了四个量级,接近目前晶体微环腔转换效率的最高值。研究者进一步地在实验上揭示了三次谐波的增强来自表面修饰的有机分子:微腔三次谐波/合频转换效率显著依赖于泵浦光偏振,平均输出功率对比度达到50倍,这是由于有机分子偶极取向导致的偏振依赖响应。该工作采用的表面修饰技术和动态相位匹配方法可以普适地推广到其它微腔和光波导等体系中,在宽带可调谐非线频率转换和表面科学研究中发挥重要作用。
北京大学 2021-04-11
太阳电池用增透陷波微纳结构
我国在太阳能电池领域内的整体技术水平与美国、德国、日本等发达国家相比还有相当大的差距。我国太阳能光伏技术的研究和开发工作绝大部分还处在跟踪或追赶发达国家的状态。真正属于我国光伏企业所自有的太阳能电池关键技术还不多。不少企业在国际光伏行业产品竞争中存在着由于生产技术水平低下而被淘汰的风险。 近几年来,我国第二代太阳能电池的理论和实验研究已经取得了长足性的进展,并处在一个由科研成果到产业化转变的关键阶段。但与此同时,我们也看到尽管薄膜电池在很大程度上解决了太阳能电池的成本问题,但是其效率却还相当低。本技术就是针对太阳电池的这一需求而发展的。   提高转换效率,最有效的办法是表面减反。表面减反包含两层意思,一是增透结构,即让光波从外界第一次遇到材料表面时光波从表面的反射尽可能少,二是陷波结构,即让光波在材料内部传输时光程尽可能大,从而被材料吸收的尽可能多。国际上近年对表面减反进行了诸多的探索,如L. L. Ma进行了变折射率多孔硅多层的减反表面研究,在3000-28000cm-1波段范围内实现了硅表面5%以下的反射。瑞士Paul Scherrer研究所的R.H. Morf设计了用于太阳能电池陷波的阶梯层叠的一维正弦衍射光栅结构。以上小组的研究都表明,合理设计和制备光伏材料表面的微纳周期结构,是一种非常有效地增加太阳能电池的太阳光能量利用率,大幅度提高太阳能电池的转换效率的技术方法。但以上的研究,都没有从同时考虑太阳光光波的自然光特性及宽角谱入射这两个特点入手在矢量衍射理论领域进行增透及陷波的设计。 本技术具体性能指标是: 1.硅表面自然光宽波段(300-2100nm)宽角谱(±30o)减反(R<2%) 2.陷波效率>1000%。
上海理工大学 2021-04-11
微腔非线性光学研究中的重要突破
北京大学物理学院“科技部极端光学创新研究团队”肖云峰研究员和龚旗煌院士领导的课题组利用超高品质因子回音壁模式光学微腔,极大地增强了表面对称性破缺诱导的非线性光学效应,得到的二次谐波转换效率提升了14个数量级。相关研究成果在线发表在《自然•光子学》(Nature Photonics)上,文章题为“Symmetry-breaking-induced nonlinear optics at a microcavity surface”。左图:表面二次谐波效应示意图;右图:光学微腔增强表面非线性效应。 二阶非线性光学效应是现代光学研究与应用中最基本、最重要的非线性光学过程之一,被广泛地用于实现频率转换、光学调制和量子光源等。由于结构反演对称性的限制,常用的硅基光子学材料往往不具备二阶非线性电偶极响应。借助材料的表面或界面,这种反演对称性可以被打破,进而诱导出二阶非线性光学响应。然而,传统的表/界面非线性光学研究存在两个重要挑战:一是非线性转换效率极低,即使在高强度的脉冲光激发下也仅能产生极少量的二阶非线性光子;二是体相电四极响应严重地干扰表面对称性破缺诱导的非线性信号分析。 该项工作中,北京大学课题组利用超高品质因子回音壁光学微腔极大增强光与物质相互作用的优势,在二氧化硅微球腔中获得了高亮度的二次谐波和二次和频信号。为了充分发挥微腔“双增强”效应,研究人员发展了一种动态相位匹配方法,利用光学微腔中热效应和光学克尔效应的相位调制,高效地实现了基波和谐波信号同时与微腔模式共振。实验上获得的二次谐波转换效率达0.049% W-1,相比传统表面非线性光学,该效率增强了14个数量级。左图:实验获得的激发光和二次谐波光谱图;右图:动态相位匹配过程二次谐波功率变化。 研究人员进一步通过对基波偏振和二次谐波模式场分布的测量分析,成功提取得到只有表面对称性破缺诱导的非线性信号,排除了体相电四极响应的干扰。这种表面对称性破缺诱导的非线性信号有望作为一种超高灵敏度的无标记“探针”,用来检测和研究材料表面分子的结构、排布、吸收等物理与化学性质,为表面科学研究与应用提供了一个全新的物理平台;同时,该项研究发展的动态相位匹配机制具有普适性,可进一步推广到不同材料、不同形状的光学谐振腔中,有望在非线性集成光子学中发挥重要作用。 研究论文的共同第一作者是张雪悦和曹启韬同学,现分别在美国加州理工学院应用物理系和北京大学物理学院攻读博士学位,通讯作者为肖云峰研究员。论文合作者包括新加坡国立大学仇成伟教授和王卓博士、清华大学刘玉玺教授、圣路易斯华盛顿大学杨兰教授等。 研究工作得到了国家自然科学基金委、科技部、人工微结构和介观物理国家重点实验室、量子物质科学协同创新中心和极端光学协同创新中心等的支持。
北京大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 94 95 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1