高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种多顶针芯片剥离装置
本发明公开了一种多顶针芯片剥离装置,包括多顶针主体机构, 安装于 Z 向升降机构上并连接旋转驱动机构,其包括中心顶针和外圈 顶针,外圈顶针先接触蓝膜上芯片的外缘实现预顶松,然后中心顶针 上升至外圈顶针等高并协作顶起芯片,完成芯片剥离;旋转驱动机构, 连接多顶针主体机构,用于先后驱动外圈顶针和中心顶针上升以完成 芯片顶起动作;Z 向升降机构,安装于三自由度微调对准机构上,停 机状态时其处于下降位置,工作状态其处于抬升位置,为顶起芯片做 好准备;三自由度微调对准机构,用于对多顶针主体机构进行 X、Y 和 Z 向的微调。本发明可实现顶针的快捷更换以及各顶针高度的方便 调节,芯片受力均匀,有效减少剥离过程中的芯片失效。 
华中科技大学 2021-04-11
一种超薄芯片的制备方法
本发明公开了一种超薄芯片的制备方法,具体为:首先在硅晶圆表面光刻形成掩膜以暴露出需要减薄的区域,再采用刻蚀工艺对硅晶圆进行局部减薄,对减薄后的区域进行芯片后续工艺处理得到芯片,最后将芯片与硅晶圆分离。本发明只是部分减薄了硅片,所以硅晶圆的机械强度仍然可以支持硅片进行后续的加工工艺,相对于传统的利用支撑基底来减薄芯片的方法,简化了工艺流程,降低了工艺成本。另外由于不需要用机械研磨工艺来进行减薄,所以不会因为机械研磨对硅晶圆造成的轻微震动而使厚度不能减得过小,通过本发明可以使芯片减薄到比机械研磨方法更薄的程度。
华中科技大学 2021-04-11
UHF RFID 无源电子标签芯片
成果与项目的背景及主要用途: RFID是射频识别技术的英文(Radio FrequencyIdentification)的缩写,射频识别技术是 20 世纪 90 年代开始兴起的一种自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。RFID 系统通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预。作为条形码的无线版本,RFID 技术具有条形码所不具备的防水、防磁、耐高温、使用寿命长、读取距离大、标签上数据可以加密、存储数据容量更大、存储信息更改自如等优点,已经被世界公认为本世纪十大重要技术之一,在生产、零售、物流、交通等各个行业等各个行业有着广阔的应用前景。 本项目主要研发了基于 ISO18000-6B 协议的无源电子标签芯片,其可用于物流,货品识别,高速公路收费等诸多领域,是目前国内外射频电路研究领域的热点。 技术原理与工艺流程简介:UHF 频段的无源电子标签工作原理如下:通过标签上外置的偶极子天线接收读卡器发送的载波信号,并将其转换为直流信号,为整个芯片供电;同时片上的解调模块解调出经调制的载波信号所携带的数据信息,并传递给片上的基带部分加以处理;基带部分连同 EEPROM 部分一起完成数据的读写和控制功能,再由调制模块以反向发射的形式将上行信号返回给读卡器完成一次通信。 本设计的工艺流程是基于 Chartered 0.35um EEPROM 数字工艺,从芯片设计、仿真、版图验证。最终通过代工厂完成芯片制作。技术水平及专利与获奖情况:根据测试结构表明,各项指标都达到了商用需求,在国内属领先水平。该项成果已获得国家知识产权局颁发的集成电路布图登记证书。BS.06500285.7 应用前景分析及效益预测:目前国内的 UHF 频段的 RFID 产品正处于高速成长期,需求量快速增长,但大多数核心技术需要依赖进口。如果本项目能够实现技术转产,可以预计的前景和经济效益是相当可观的。有了自主知识产权的 UHF频段电子标签,在很多领域都可以加以移植,取代进口产品不但可以大大节省开支,同时也可以实现产品的自我定制及更新,最大程度的方便了国内用户的应用。 应用领域:货品跟踪和识别(代替条形码)、高速移动物体的识别、防伪认证以及电子支付等领域都会有广泛的应用。 技术转化条件(包括:原料、设备、厂房面积的要求及投资规模):四十平方米以上的办公用房,电脑、工作站若干,相应软件。也可以和 RFID天线制造单位,卡片封装单位共同合作,将成果转产。 合作方式及条件:面谈。
天津大学 2021-04-11
快速响应的水凝胶薄膜光学传感技术
项目简介: 本技术是利用智能水凝胶的刺激响应性,结合 Fabry-Perot 薄膜 干涉现象提出的新型光学传感方法。本技术使用的水凝胶薄膜厚度仅 数微米,因此具有响应速度快速的特点。可检测的项目包括温度、pHIntensity Wavelength 值、葡萄糖等。可与光纤传感技术相结合,实现远程传感。
南开大学 2021-04-11
全息薄型CD光学产品与生产技术
一、市场分析 全息薄型CD光学头(含小机芯)是用于笔记本电脑光盘驱动器、移动VCD、便携CD机的重要核心部分。市场需求十分旺盛,并有持续性需求。该项目产品具有较高的技术含量,属于信息产品中的光电存储产品,是国家产业政策重点支持的产业方向,也符合武汉光谷地方经济的产业发展。二、项目简介 本课题组拥有该项目完整的、成套的生产技术,包括产品生产的技术文件、工艺文件等。并能够设计、制造产品生产线所需的全套生产设备(包括:调整机、评价机、工装治具等)。还可完成整条生产线的设计、安装、调试、样品试制、量产全过程。
武汉工程大学 2021-04-11
微腔非线性光学研究中的重要突破
北京大学物理学院“科技部极端光学创新研究团队”肖云峰研究员和龚旗煌院士领导的课题组利用超高品质因子回音壁模式光学微腔,极大地增强了表面对称性破缺诱导的非线性光学效应,得到的二次谐波转换效率提升了14个数量级。相关研究成果在线发表在《自然•光子学》(Nature Photonics)上,文章题为“Symmetry-breaking-induced nonlinear optics at a microcavity surface”。左图:表面二次谐波效应示意图;右图:光学微腔增强表面非线性效应。 二阶非线性光学效应是现代光学研究与应用中最基本、最重要的非线性光学过程之一,被广泛地用于实现频率转换、光学调制和量子光源等。由于结构反演对称性的限制,常用的硅基光子学材料往往不具备二阶非线性电偶极响应。借助材料的表面或界面,这种反演对称性可以被打破,进而诱导出二阶非线性光学响应。然而,传统的表/界面非线性光学研究存在两个重要挑战:一是非线性转换效率极低,即使在高强度的脉冲光激发下也仅能产生极少量的二阶非线性光子;二是体相电四极响应严重地干扰表面对称性破缺诱导的非线性信号分析。 该项工作中,北京大学课题组利用超高品质因子回音壁光学微腔极大增强光与物质相互作用的优势,在二氧化硅微球腔中获得了高亮度的二次谐波和二次和频信号。为了充分发挥微腔“双增强”效应,研究人员发展了一种动态相位匹配方法,利用光学微腔中热效应和光学克尔效应的相位调制,高效地实现了基波和谐波信号同时与微腔模式共振。实验上获得的二次谐波转换效率达0.049% W-1,相比传统表面非线性光学,该效率增强了14个数量级。左图:实验获得的激发光和二次谐波光谱图;右图:动态相位匹配过程二次谐波功率变化。 研究人员进一步通过对基波偏振和二次谐波模式场分布的测量分析,成功提取得到只有表面对称性破缺诱导的非线性信号,排除了体相电四极响应的干扰。这种表面对称性破缺诱导的非线性信号有望作为一种超高灵敏度的无标记“探针”,用来检测和研究材料表面分子的结构、排布、吸收等物理与化学性质,为表面科学研究与应用提供了一个全新的物理平台;同时,该项研究发展的动态相位匹配机制具有普适性,可进一步推广到不同材料、不同形状的光学谐振腔中,有望在非线性集成光子学中发挥重要作用。 研究论文的共同第一作者是张雪悦和曹启韬同学,现分别在美国加州理工学院应用物理系和北京大学物理学院攻读博士学位,通讯作者为肖云峰研究员。论文合作者包括新加坡国立大学仇成伟教授和王卓博士、清华大学刘玉玺教授、圣路易斯华盛顿大学杨兰教授等。 研究工作得到了国家自然科学基金委、科技部、人工微结构和介观物理国家重点实验室、量子物质科学协同创新中心和极端光学协同创新中心等的支持。
北京大学 2021-04-11
全光纤二阶非线性光学效应研究
西北工业大学物理科学与技术学院赵建林教授研究团队在全光纤光波长转换方面取得重要进展。提出了一种二维材料辅助的全光纤波长转换方案,利用该方案制备的波长转换器,仅需百微瓦量级光功率(远小于一支普通激光笔的输出光功率)即可将近红外光稳定地转换为可见光。该技术在全光纤中实现光波长的高效转换,兼容现有成熟的光纤通信和传感系统,也为其他高性能全光纤非线性器件的实现开辟了新的途径。利用全光纤的二阶非线性效应不仅可以拓展光纤激光器的工作波段,还有望实现全光纤的线性电光调制器、缠绕光子对等,可极大拓展业已成熟的光纤通信、传感技术在信息处理与感知领域的应用范围。然而,石英光纤的中心反演对称性阻碍了其二阶非线性效应的产生和利用。目前,基于二阶非线性效应实现光波长转换,需要对光纤进行特殊掺杂、极化等复杂工艺处理,以及高功率脉冲激光泵浦等苛刻条件,因此如何降低光纤中波长转换的实现条件,成为困扰科学家们的一个难题。针对此问题,研究团队创新性地提出一种层状二维材料硒化镓辅助的全光纤波长转换器,利用微光纤导波模式的强烈倏逝波与硒化镓的相互作用,利用百微瓦级连续光即可实现倍频、和频等非线性参量转换过程,进而将近红外光稳定地转换为可见光。相关研究成果以“High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe”为题,已在国际光学顶尖期刊《Light: Science & Applications》发表。论文第一作者为团队姜碧强副教授,通讯作者为甘雪涛教授和赵建林教授,西北工业大学为唯一作者单位。论文链接:https://www.nature.com/articles/s41377-020-0304-1
西北工业大学 2021-04-11
关于纳米尺度单颗粒光学检测的研究
围绕回音壁模式微腔和光子晶体微腔,总结了光学微腔传感的两种传感机制:色散性和耗散型传感,并比较了通过透射谱和反射谱两种测量方法所带来的噪声影响;接着介绍了在国际学术界微腔传感的最新进展中,如何通过压制实验噪声,制作增益腔,提高光谱分辨率,从而检测到更小的纳米尺度颗粒;以及如何通过微腔锁模和振铃现象提高测量的时间分辨率。
北京大学 2021-04-11
光学投影式三维形貌测量系统(产品)
Ø  成果简介:光学投影式三维形貌测量方法是一种非接触、高精度、快速获取被测物三维形貌的方法。基于此方法开发研制而成的测量系统可在1分钟内获取测量区域10cm2-400cm2内被测物三维形貌,测量分辨率可达到200μm。该系统硬件部分包括小型化条纹投射装置、高分辨率数字CCD相机和控制电路,自行编写的软件拥有仪器控制、图像采集、分析和可视化等功能并嵌套相位解包裹专用算法。便携式设计使该套系统可方便应用于车间、厂矿等各种测量环境。Ø  项目来源:自
北京理工大学 2021-01-12
具有光学性质的钯纳米薄片的制备方法
本发明涉及一种具有光学性质钯纳米薄片的简易制备方法。7.04×10-4mol/L 的 PdCl2 粉末和 7.04×10-4~5.64×10-2mol/L 十六烷基三甲基溴化铵添加到水-乙醇混合溶液体系 中,将配好的溶液搅拌,溶液颜色为浅黄色,再将反应体系置于 15~200W 的白炽灯下照射 1~12 小时,停止光照,离心分离所得的黑色沉淀物,并用乙醇和丙酮各洗涤一次,置于 40 ℃的真空烘箱中干燥,即得钯纳米薄片材料。方法获得的纳米材料粒径在 28~44nm 之间,粒 子形貌呈多边形,粒径分布较窄,在 340nm 附近出现紫外-可见消光谱峰,表明纳米材料在 此区域具有光学性质。本制备方法条件温和,过程简单,生产周期短,易于规模化生产。
安徽理工大学 2021-04-13
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 45 46 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1