高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种激光诱导液滴靶放电产生等离子体的装置
本发明提出一种激光诱导液滴锡靶放电产生等离子体极紫外光 源的装置,包括储锡池、旋转圆盘、锡液、温度控制器、阻拦屏、旋 转圆面屏、电极对和激光器等。该装置通过将旋转圆盘部分浸入液态 锡中,利用了高速圆周离心力作用产生逃逸的液态锡,阻拦屏和旋转 圆面屏的阻挡和选通作用,产生周期性的锡液滴,通过电极对,在激 光的作用下产生极紫外光。本装置通过让激光作用在的锡液滴而非作 用在电极上的液态锡膜上,解决了传统旋转放电圆盘电极液体
华中科技大学 2021-04-14
一种基于光诱导介电泳技术和纳米孔的DNA测序装置和测序方法
本发明公开了一种基于光诱导介电泳技术和纳米孔的DNA测序装置和测序方法,该装置包括介电泳装置、纳米孔单分子传感器、隧穿电流信号检测系统、离子电流信号检测系统以及激光系统;传感器位于介电泳装置的内部,将介电泳装置分为左右两个空腔,且该传感器设有将左右两个反应腔连通的通孔;隧穿电流信号检测系统与纳米孔单分子传感器电连接;离子电流信号检测系统的两端分别置于通孔左右两侧的反应腔内;激光系统位于介电泳装置的外部,其发射的激光束照射于介电泳装置上。本发明减慢了DNA过孔速度,提高了测序精度,这些为实现单碱基分辨
东南大学 2021-04-14
一种杨树愈伤组织诱导方法及诱导培养基
本发明公开了一种杨树愈伤组织的诱导方法及诱导培养基,属于杨树的组织培养领域。本发明所筛选、优化的杨树愈伤组织诱导培养基为添加0.5-1.5mg/l萘乙酸、0.5-1.5mg/l?6-糠氨基嘌呤、20-40g/l蔗糖和4.5-6.5g/l琼脂的h培养基。本发明以单核靠边期的杨树花药为外植体,将其接种到所筛选的愈伤组织诱导培养基上进行愈伤组织诱导培养,获得生长速度快、器官分化率高的杨树愈伤组织。本发明愈伤组织诱导培养基可以有效提高愈伤组织的诱导率,所获得的愈伤组织质量高,可以在短期内形成大量优良的杨树试管苗,不仅可以快速繁殖杨树,同时也可以应用于杨树植物改良,种质保存等方面。
北京林业大学 2021-02-01
一种杨树愈伤组织诱导方法及诱导培养基
项目成果/简介:本发明公开了一种杨树愈伤组织的诱导方法及诱导培养基,属于杨树的组织培养领域。本发明所筛选、优化的杨树愈伤组织诱导培养基为添加0.5-1.5mg/l萘乙酸、0.5-1.5mg/l?6-糠氨基嘌呤、20-40g/l蔗糖和4.5-6.5g/l琼脂的h培养基。本发明以单核靠边期的杨树花药为外植体,将其接种到所筛选的愈伤组织诱导培养基上进行愈伤组织诱导培养,获得生长速度快、器官分化率高的杨树愈伤组织。本发明愈伤组织诱导培养基可以有效提高愈伤组织的诱导率,所获得的愈伤组织质量高,可以在短期内形成大量优良的杨树试管苗,不仅可以快速繁殖杨树,同时也可以应用于杨树植物改良,种质保存等方面。
北京林业大学 2021-04-11
清华大学材料学院和机械系研究团队联合报道“超快激光诱导构筑金属-载体强相互作用”新进展
近日,材料学院汪长安教授团队和机械系闫剑锋副教授合作首次以超快激光诱导构筑金属-载体强相互作用(SMSI)。利用超快激光激发界面局部电场强度,调节原子扩散速率和路径,诱导表面缺陷形成以及亚稳态结构迁移,在一系列负载型贵金属催化剂中构筑金属-载体界面强相互作用。
清华大学 2021-12-01
鱼类性别分化的人工诱导技术
本技术成果基于雌激素在鱼类性腺分化发育中的关键作用,通过干预鱼体内雌激素水平从而达到调控 鱼类性腺分化发育的方向。埋植或投喂雌激素合成酶(芳香化酶)抑制剂,可降低体内雌激素水平,成功 诱导雌性先熟的性逆转鱼提前性逆转,获得人工诱导的雄鱼
中山大学 2021-04-10
化学小分子诱导细胞重编程
邓宏魁研究团队开创性地建立了化学小分子诱导细胞重编程的新体系,提供了细胞命运调控的新手段,突破了功能细胞制备的关键瓶颈,为再生医学治疗重大疾病开辟了新的理想途径,是我国在该领域前沿的标志性重大成果。
北京大学 2021-02-22
小分子诱导植物抗性技术体系
一、成果简介 化学农药防治病害给环境和生态造成了污染,同时也给食用安全留下隐患。小分子诱导植物自身获得系统性抗病能力,具有环境友好、绿色安全、稳定持久和广谱高效特点,为植物病害的绿色 高效防控提供了新的思路。该项技术筛选一类分子量小、结构简单、组织分布广泛、生物效应多样、免疫原性低、本身不杀菌但可诱发植物自身主动抗性的小分子活性物质,构建抗病、抗低温和定向 品质提升技术体系,实现不用
中国农业大学 2021-04-14
角膜基质诱导再生重大成果
眼角膜作为视觉成像系统中一个至关重要的组织,是眼睛最前面的凸形高度透明物质,可以保护眼内的微结构及组织,并为眼睛提供大部分屈光力。但是角膜损伤、感染及一些先天性因素导致角膜疾病成为全球第二大致盲疾病。同种异体角膜、人工角膜及人的羊膜移植是三类临床上应用最广泛的角膜疾病治疗方法,但是这些方法都会存在一定的问题或缺陷。因此,利用先进的生物制造工程的方法(Biofabrication)开发出一种治疗性的角膜支架,用于替代受疾病影响的角膜组织或诱导角膜组织自身再生,是至关重要的。目前,角膜组织诱导再生的难点在于角膜基质层,该层组织是角膜的主要组成部分,具有多层正交定向的纳米纤维板层组成的复杂结构,利用传统的生物工程的方法很难真实地模拟基质层的结构。纤维板层之间分布着角膜基质细胞,这种细胞在体外培养及角膜组织损伤时很容易转化为角膜成纤维细胞及肌成纤维细胞,导致角膜出现瘢痕。因此,制备能够模拟天然角膜基质结构的支架,同时保持角膜基质细胞的表型,诱导角膜基质的再生,是一个重大的挑战。针对这一难题,弥胜利和孙伟课题组提出了使用近场静电纺丝技术制备网格状的亚微米纤维支架,并和水凝胶技术结合,制备了纤维水凝胶复合支架,用于模拟正交定向的角膜基质板层结构和板层之间起连接作用的糖蛋白。课题组提出了一种最优的拓扑结构及化学因子的组合,可以抑制角膜基质细胞的成纤维分化,保持其表型,并最终实现角膜基质的诱导再生。图1:(a)近场静电纺丝技术制备的具有不同纤维间距的PECL网格状亚微米纤维支架在不同放大倍数下的SEM图片;(b)接种在100um网格状纤维支架上的角膜缘基质干细胞进行细胞骨架及细胞核染色,细胞可以在支架上沿着纤维方向生长;(c)5% GelMA水凝胶内封装的角膜缘基质干细胞进行活死染色图片;(d)5% GelMA水凝胶内封装的角膜缘基质干细胞进行细胞骨架及细胞核染色图片;(e)纤维水凝胶复合支架的SEM图片。目前近场静电纺丝技术应用最广泛的材料是PCL,但是由于PCL是疏水材料,不利于细胞的粘附,因此该研究利用PEG作为引发剂,合成了PEG和PCL的共聚物PECL,显著提高了PCL的亲水性。课题组首次利用近场静电纺丝技术成功制备了正交定向的PECL亚微米纤维支架 (图1a),角膜缘基质干细胞可以在支架表面黏附并沿着纤维方向铺展及生长 (图1b)。研究通过将MA修饰到明胶大分子链上合成了GelMA,探究出最优的MA修饰度及GelMA浓度,可以使封装在GelMA水凝胶内的角膜缘基质干细胞保持高的细胞活性(图1c)并能铺展开(图1d)。课题组采用模具灌注的方式制备了纤维水凝胶复合支架 (图1e),通过研究不同纤维间距的网格状支架对纤维水凝胶复合支架理化性能的影响,找出了最优的拓扑结构可以使纤维水凝胶在力学性能、透光度和溶胀性方面最接近于天然的角膜组织。研究将角膜缘基质干细胞接种在2D的细胞培养皿、3D的GelMA水凝胶及最优的纤维水凝胶复合支架内,并研究角膜缘基质干细胞在含血清及不含血清的培养基中的分化及角膜基质细胞表型的维持。研究表明,这种最优的纤维水凝胶的拓扑结构及无血清培养基可以抑制角膜基质细胞向成纤维细胞分化。图2 大鼠角膜基质内板层移植实验及评估:(a)5种支架移植后裂隙灯观察图片;(b)支架移植后OCT观察图片,标尺是1000um;(c)术后不同时间段中央角膜的厚度;(d)术后1个月和3个月免疫荧光染色图片观察组织诱导再生情况,标尺是100um;(e)术后1个月和3个月HE染色图片观察组织诱导再生情况,标尺是100um。最后,研究使用大鼠进行角膜内的板层移植实验,分别进行了3D GelMA水凝胶、含化学因子3D GelMA、最优纤维水凝胶支架及含化学因子最优纤维水凝胶支架的移植,对照组为自体角膜移植(图2a)。术后通过OCT、免疫荧光染色及HE染色进行3个月的研究观察(图2b-e)发现相比于其他的支架,含化学因子的最优纤维水凝胶支架的移植可以最好地实现角膜基质的诱导再生。论文链接:https://doi.org/10.1038/s41467-020-14887-9
清华大学 2021-04-10
动量拓扑诱导的光学牵引力
近日,哈尔滨工业大学物理学院丁卫强教授课题组在光力与光操控研究中取得重要突破,相关成果以《动量拓扑诱导的光学牵引力》(Momentum-Topology-Induced Optical Pulling Force)为题发表在《物理评论快报》(Physical Review Letters124, 143901, 2020)上。哈工大为该论文的第一署名单位,物理学院博士研究生李航为论文第一作者,物理学院丁卫强教授与新加坡国立大学仇成伟教授为论文共同通讯作者。
哈尔滨工业大学 2021-04-11
首页 上一页 1 2 3 4 5 6 7 下一页 尾页
热搜推荐:
1
云上高博会企业会员招募
2
63届高博会于5月23日在长春举办
3
征集科技创新成果
中国高等教育学会版权所有
北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1