高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
光谱仪器光栅分光器件与部件
中阶梯光栅的刻划: ICP光谱仪的分光核心部件主要是中阶梯光栅,中阶梯光栅的二维分光系统,具备更高的分辨能力,使光谱仪具有分析精准、多元素同时检测以及检测速度快等优点。 √ 分辨力高 √ 制作难度大
上海理工大学 2021-04-13
多光谱猪肉糜掺杂快速检测装置
本实用新型公开了一种多光谱猪肉糜掺杂快速检测装置,涉及农产品质量快速检测技术领域。装置包括:多光谱波段切换室、控制室、样本光照室和智能检测模块。多光谱波段切换室安装于长方体外壳的顶端一侧,室内设有一个滤光片切换装置,该装置的圆盘上装有四个不同波段的滤光片,一个黑白工业相机被置于室内中部,正对于一个滤光片的上方,相机镜头正对样本光照室,和智能检测模块相连接。本实用新型通过切换滤光片的方式,结合黑白工业相机对待测样品的多光谱图像进行采集,通过智能检测模块终端对多光谱图像信息进行实时计算和显示,完成对猪肉糜掺杂鸡肉比例的快速检测。整个装置具有体积小、操作简单、便携耐用、智能化程度较高等优点。
青岛农业大学 2021-04-13
吸收光谱分析仪
“NMT界乔布斯”许越先生推荐创新平台 中关村NMT产业联盟推介成员单位创新产品 “全球抗疫,人人有责”   推出背景:         研究论文的可重复性是研究科学性的最重要基础。论文可重复性需要作者对研究的相关过程、研究对象和统计分析方法提供详细的描述,否则给其他学者重复实验带来很大困难,但是活体生理研究的可重复性差一直困扰着这一领域。有一些杂志在这方面已经进行了一些探索,但仍然不能避免一些研究可重复性差的问题。重现性、严谨性、透明性和独立验证是科学方法的基石。   实验的严谨性在于实验变量的统一,随着科技的发展,变量的因素会越来越完善,检测方法、检测设备也会越来越专业,除了我们已知的实验变量,其实还有很多的其他因素也是实验变量的一部分,只是还没有能够将这些因素通过精确数据的形式展示出来。   NMT创新产品系列,带您找到实验中的变量!   产品介绍 名称:吸收光谱分析仪 型号:PSA-100 品牌:旭月 产地:中国 简介: 应对挑战: 活体样品检测时样品及检测过程中的参数是数据重复性的关键 光是活体生物重要的影响元素之一,对于样品测试及处理都是必须的,不同的光照对测试培养产生的影响,现阶段还没有专业的设备去依据科研人员的实验需求而提供不同的光源 解决方法: 吸收光谱分析仪能够在NMT实验中提供不同的光照强度。不同的光波长,对植物与光谱的研究具有重要的意义 吸收光谱分析仪可以通过电脑,手机等终端查看数据,解决了人工记录数值可能造成的差异性及意外   功能特点 1.基本功能: 可提供多种波长,不同光照强度的光源,直接对样品进行照射 实时监测、记录光照强度数值 液晶屏实时显示监测数值 可通过电脑、手机等终端查看和下载数据
旭月(北京)科技有限公司 2021-08-23
UVR-III全光谱数码照相系统
产品详细介绍UVR-III全光谱数码照相系统价格:150000.00佳能70D改制,运用近贴光锥耦合紫红外增强技术,使相机可以感应200nm-1100nm波长光线。对各种光滑客体表面的指纹,实时观察,直接拍照。相机像素:1800万取景模式:光学取景∕实时取景影像感应器:22.3×14.9mmLED显示屏:3.0英寸TFT液晶屏影像处理系统:DIGIC 4相机感光度: ISO 100-12800曝光模式:P、AV、TV、M紫外镜头:78毫米,有微距功能滤光片:254、365、850、950nm环形短波紫外光源:功率8W远程搜索光源:功率8W红外便携光源: 600nm-1100nm产品名称 规格及技术参数全光谱数码照相机主机 应用于现成勘查中指纹、血液、精斑等物质的发现固定提取,可以直接拍照提取指纹,对客体无损害,保证指纹的完整性。技术参数:相机类型 佳能60D数码单反相机(改装)波长响应范围 200nm~~1100nm相机像素 1800万像素紫外石英镜头 高通量8W紫外环型光源 交直流供电式紫外灯远程紫外搜索灯 交直流供电式紫外灯红外光源 35W便携式红外灯254nm、365nm紫外滤光片 高品质窄带紫外滤光片850nm、950nm红外滤光片 高品质窄带红外滤光片高性能交直流电池充电器 8.4V专用充电器取景模式 实时取景传感器尺寸 22.3×14.9 mm存储介质 SD卡感光度 相当于ISO100~12800图像传输 USB2.0(高速)曝光模式 M档、TV档、AV挡、P档影像处理器 DIGIC 4配置清单1 紫红外数码相机主机 1台2 照相机电池、充电器、数据传输线 1套3 高通量紫外石英镜头 1个4 254nm、365nm、850nm、950nm滤光片 各1片5 4G SD卡 1个6 紫外光源(配8.4V充电器) 1套7 小型红外光源 1个8 紫外防护镜 2付9 三防箱子 1个10 三角架 1架11 比例尺 1包12 手套 2付13 说明书、光盘 1套
北京华兴瑞安科技有限公司 2021-08-23
单火焰原子吸收光谱仪
1.产品型号 ​ AA-1800F三灯座单火焰原子吸收光谱仪 AA-1800C六灯座单火焰原子吸收光谱仪 AA-1800D八灯座单火焰原子吸收光谱仪     1.产品简介 AA-1800型原子吸收光谱仪是由行业的专家和国内知名高校联手研发完成,拥有几十年光谱仪器的研发和应用经验。该产品包括火焰及氢化物发生系统,可配置多种附件,灵活的配置方案可满足不同层次客户的需求。全自动多功能AA-1800型原子吸收光谱仪可进行复杂的样品分析,多种分析方法可自动切换,做到无人全自动分析。AA-1800型原子吸收光谱仪广泛应用于科研、质检、疾控、环保、冶金、农林、化工等行业,创新的软、硬件设计确保样品分析的准确性、安全性、易用性,仪器维护简单便捷。   2.主要特点高精度全自动化光学系统色散率为1800条/毫米刻线大面积光栅,新型自准直单色器,所有镜片均是石英镀膜,宽广的检测范围和光学稳定性确保了分析的精度。手动3灯座配置3个独立灯电源,可分别预热;高分子雾化室高分子材料抗腐蚀雾化室,耐酸碱,包括氢氟酸,无论是有机或是无机溶液都能得到较好的灵敏度和稳定性;钛燃烧器钛燃烧器,可选配50mm和100mm燃烧器,空冷预混合型,耐腐蚀,耐高盐,大幅度提高火焰的效率和火焰分析的准确度;全自动化分析能自动完成安全点火,熄灭和切换,结构可靠,故障率低,从而确保火焰法的灵敏度和重现性。光源系统三灯位平台切换,可直接使用高性能空心阴极灯,提高火焰分析的灵敏度,自动调节供电参数和光束位置,全自动波长扫描和寻找波峰;高技术指标AA-1800型原子吸收光谱仪元素测试灵敏度达到行业先进水平,灵敏度≤0.015μg/mL/1%;基线漂移小于0.003Abs/30m,稳定性优于0.005Abs/4h;背景校正系统采用氘空心阴极灯和自吸收扣背景进行背景校正,消除低含量测定时分子吸收的干扰,减少了氘灯的发射噪声,延长了使用寿命,具有 较好的稳定性。氘灯背景信号为1A时,扣除背景能力>50倍;智能化分析智能性非常强,人性化设计,自动设置调节火焰高度,自动点火,水平位置自动优化,系统自动设置气体流量。如遇停电、误操作、乙炔泄漏等,系统会自动启动安全保护功能;3.软件功能强大的功能高智能软件,功能强大,友好的中文操作界面。全自动仪器及附加控制,可自动优化,自动稀释;鼠标操作,自动设定菜单数据和校正方法;测量数据可以实现动态显示。标准曲线可以实现自动拟和;样品测量准确:采用向导的方式对样品进行设置,方便快捷;灵敏度校正功能:使测量的结果更为准确;数据共享方便快捷的数据共享数据处理:可对数据进行编辑保存;打印输出:提供单元素与多元素分析的报告;对测量结果及仪器的条件进行打印;数据导出:数据导出功能实现了与其他系统的数据共享。数据处理测量方式 : 火焰法、氢化物-原子吸收法   浓度计算方式 : 标准曲线法(1~3次曲线),自动拟合,标准加入法   重复测量次数 : 1-99次、计算平均值、给出标准偏差和相对标准偏差   结果打印 : 参数打印,数据结果打印,图形打印,可导出WORD、EXCEL文档
上海美析仪器有限公司 2021-12-16
一种基于大气中性点的偏振遥感地-气信息分离方法
本发明涉及一种基于大气中性点的偏振遥感地一气信息分离方法,其包括以下步骤:1)确定天基偏振传感器能够观测到的大气中性点及其物理性质;2)确定Babinet中性点为适用于偏振遥感观测的中性点;3)根据目标观测区域地方时,确定天空中Babinet中性点与太阳位置的凡何关系模型,确定Babinet中性点在空中的位置,并在Babinet中性点方向放置天基偏振传感器进行观测这时传感器到地表之间的大气的偏振作用为零或减小到一定程度,达到大气偏振效应有效去除,同时地物的偏振信息能够最大限度地获取的程度。
北京大学 2021-02-01
主动式偏振目标增强的共光路全景环带光学成像装置
本实用新型公开了一种主动式偏振目标增强的共光路全景环带光学成像装置,包括全景环带偏振照明系统与全景环带偏振成像系统;全景环带偏振照明系统与全景环带成像系统共光路,由全景环带透镜、后续镜组、偏振分光组件及靶面依次排布组成;偏振分光组件一侧的靶面为照明光源,另一侧的靶面为成像相机。本实用新型实现了大视场范围高对比度的关键目标探测,利用目标物体和背景物体保偏性能的差异,可增强关键目标物体与背景环境的对比度,有利于目标探测与追踪。采用主动成像方式可以提供更真实有效的物体保偏性能信息。本实用新型采用共光路设计,提高了对振动等环境因素的稳健性,装置结构紧凑,体量轻巧,可适用于较为恶劣的工作环境。
浙江大学 2021-04-13
一种基于偏振态调节的单模光纤电流传感器
本发明公开了一种基于偏振态调节的单模光纤电流传感器,其 包括依次相连接的超辐射二极管、起偏器、保偏耦合器、偏振控制器、 检偏器、光电探测器及降噪放大器、以及法拉第反射镜。所述单模光 纤电流传感器还包括两端分别连接所述法拉第反射镜及所述保偏耦合 器的单模光纤,所述单模光纤绕待测件的中心轴缠绕形成单模光纤环, 所述待测件穿过所述单模光纤环。
华中科技大学 2021-04-14
超宽光谱微弱光探测及成像芯片研制
受到技术出口限制等原因,目前,我国的红外探测技术无论是在技术水平、产品性能、灵敏度、应用范围等方面还具有很大的局限。本项目采用新颖量子点纳米材料,制备新型结构高灵敏度光电探测器,以窄带隙IV-VI族半导体纳米材料为光敏感层,研发红外上转换光子探测器,实现对微弱入射光(特别是红外光)进行探测及成像的芯片设计,并用于其他安监和夜视应用研究。实现从紫外到中波红外(20µm)的一体化、超宽谱段的微弱光探测与成像。完成超宽光谱微弱光探测及成像芯片制备,实现红外领域高精尖技术的自主可控及大面积的推广应用,真正实现红外“中国芯”,意义重大、市场广泛。
北京理工大学 2023-05-09
激光诱导击穿光谱元素分析仪
激光诱导击穿光谱(Laser-induced Breakdown Spectroscopy,LIBS)技术是一种原子发射光谱分析技术,其基本原理是利用脉冲激光在待测样品表面激发产生等离子体,通过等离子体发射的光谱波长和强度信息,分别获得待测元素的种类及含量。LIBS技术因具有无需制样、分析速度快、远程非接触、可实现对任何物质的多元素同时分析等特点,被誉为分析领域的“未来超级巨星”,在航空航天、智能制造、生物医药、环境保护、能源、地质、深海探测等领域都极具应用前景,特别是2021年我国“祝融号”火星车搭载LIBS系统登陆火星开展地质勘探,使得该技术再次成为国内外的研究热点。LIBS系统主要由激光器、光谱仪、探测器和时序控制器等核心单元组成,典型的LIBS检测系统如图1(左)所示,光谱图如图1(右)所示。 图1典型的LIBS检测系统(左)与LIBS光谱图(右) 本团队对LIBS技术进行了长达15年的攻关,在一系列关键技术上取得了重大突破,成功研制了从台式、移动式到手持式的系列国产LIBS元素分析仪,实现了6种LIBS成分分析仪器的国产化,并成功推动其在金属材料、环境保护和生物安全等领域的应用。研究工作从基础研究、装备研发到工程应用全链条展开(如图2),取得的创新成果如下。 图2团队对于LIBS技术从基础研究-装备研发-工业应用的全链条攻关 (1)高灵敏度、高稳定性和高精度LIBS分析新方法 针对LIBS技术存在自吸收效应、基本效应和光谱波动性大等问题导致其探测极限低、灵敏度差和分析精度低的难题,团队提出了一系列新技术新方法。 1)提出采用OPO波长可调谐激光对等离子体中基态粒子进行能态选择性激发的新方法,从源头上阻止了LIBS自吸收效应产生,从而获得自吸收免疫的LIBS本征光谱。 2)提出采用微波对等离子体进行瞬时加热,获得温度场均匀分布的等离子体,实现宽光谱多元素的自吸收效应遏止。 3)提出一种基于等离子体图像-光谱融合的图像辅助LIBS技术,有效克服了基体效应对定标曲线建立的影响,大幅度提高了LIBS的定量分析精度。 4)针对工业现场物质的快速高精度定量分析需求,提出一种仅需一个标准样品就可完成定量的LIBS单标样法和一种可克服自吸收效应影响的LIBS无标样定量方法。 5)针对生物体、食品、中药等疏松含水组织基体复杂,导致光谱信号微弱且波动大的问题,提出了从光谱预处理-特征提取-机器学习模型的全链条定性定量分析算法,相比于传统分析方法,可将分析精度提高10%。 6)提出一种面向金属3D打印构件的激光谱-超声同时检测技术,可同时对金属3D打印构件的表面元素分布、内部缺陷、残余应力和晶粒度进行同步分析。 (2)高精度LIBS成分分析仪研制 针对LIBS的光机电系统难以集成的难题,团队通过构筑模块化“笼式”光路系统,研制了共聚焦显微光学系统、同轴信号采集、放大装置等新技术,成功将OPO共振激发和等离子体图像-光谱融合新技术集成到LIBS成分分析仪中,实现了10-7量级的LIBS探测极限,将LIBS探测灵敏度提高了2个数量级,探测稳定性优于2%。所研制的系列激光探针元素分析仪如图3所示。 图3台式到便携式系列LIBS分析仪
华中科技大学 2022-10-11
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 23 24 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1