高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
处理吹填软土的多点胁迫振冲联合挤密法
多点胁迫振冲联合挤密法,用于加固处理吹填松散砂土地基,采用多点胁迫振动的联合振冲法和振动碾压挤密法两种加固方法有机结合;多点胁迫振动的联合挤密法给其松散的砂土骨架施加予力作用,即施加振冲力、激振力、共振力、挤压力和碾压力;促成饱和松散砂土体产生预变形和预沉降,使之地基土经处理后能更好地满足工程使用阶段的承载变形要求;对于加固港口工程的冲填砂土地基来说,其预力度标准可控制在0.85~0.65范围内,并在振冲后1~7天时间内完成振动碾压挤密。该法是一种复合型加固处理吹填松散砂土地基新方法。它将两种方法有机匹配揉合在一起,相互补充,相互促进,共同形成有机组合的快速高效处理吹填砂土地基新工法。工艺路线:应用予力技术作用原理,将多点胁迫振冲法与工艺揉合的振动碾压法两种地基处理工法有机匹配,有机揉合,创新出新的施工工艺路线。 应用范围:(1)港口码头抛石挤淤及吹填形成的陆域场地的地基处理工程。(2)围海造地及滩涂造地形成的新陆域场地的地基处理工程。(3)处理软弱地基土深度可达10-15m,甚至更深(正在改制机械)。  (4)特别适合处理含泥量少的过饱和粉细砂土吹填软基。
南京工业大学 2021-04-13
一种针对组合导航中DVL失效的混合处理方法
本发明公开了一种针对组合导航中DVL失效的混合处理方法,当DVL有效时,采集SINS解算信息和DVL量测信息构成数据表,利用偏最小二乘回归建立线性预测模型,再将DVL量测信息和偏最小二乘回归模型预测所得结果相减得到残余部分,并将其作为训练目标,利用支持向量回归训练得到相应的预测模型;当DVL失效时,利用所建立的偏最小二乘回归模型和支持向量回归模型分别预测DVL量测线性部分和残余部分,并将两者之和作为所预测的DVL量测信息,从而保证DVL间歇失效情况下,SINS/DVL组合导航结果的可靠性。本发明利用
东南大学 2021-04-14
一种基于轮询自匹配的网络监测方法及装置
本发明公开了一种基于轮询自匹配的网络监测方法及装置,由可调光源为待监测的链路内调制并出射一个与待监测链路相对应的监测脉冲序列,利用接收处理及控制单元发出的指令逐个完成对待监测的链路状态识别。本发明方法能够有效地对无源光网络中各分支光纤链路实现监测,在接收端,通过监测脉冲序列与终端编码器匹配时形成的独有信号特征来判别各分支光纤链路的状态。同时,该装置具有结构简单,能有效降低系统及用户成本。
东南大学 2021-04-14
一种有机功能介孔氧化硅的合成方法
本发明涉及一种有机功能介孔氧化硅的合成方法。该方法以三乙氧基硅烷与三烷氧基有机硅烷偶联剂作为硅源,以聚环氧乙烷?聚环氧丙烷?聚环氧乙烷三嵌段共聚物(P123)作为表面活性剂,在酸性条件下通过共聚法一步将有机功能基团耦合到有序介孔氧化硅中,得到了功能化程度远远大于传统共聚法接枝率的有机功能化介孔氧化硅。在反应过程中,通过控制有机硅烷偶联剂与三乙氧基硅烷的加入量比例可调控介孔氧化硅的功能化程度及孔道的有序度。
东南大学 2021-04-14
高浓度印染废水及污泥的超临界水氧化处理
超临界水氧化技术(Supercritical Water Oxidation,简称SCWO)是利用水在超临界状态下所具有的特殊性质,使氧化剂和有机物完全溶解在超临界水中并发生均相氧化反应,迅速、彻底地将有机物转化成无害化的CO2、N2、H2O等小分子化合物。与其它传统处理技术相比,超临界水氧化技术具有以下优势:有机物去除率可达99.9%以上;有机物质量浓度达到2%以上时,系统能够实现自热;反应空间密闭,不带来二次污染;反应时间短,设备结构简单,占地面积小。 2011年,我国印染废水的年排放量达到19.26亿吨,待处理的印染污染物量巨大,处理量500t/d的SCWO设备将需要100万套,富余热量可用来加热饱和蒸汽,年蒸汽收益可达到720亿元/a;反应后的出水可100%回用,年回用水收益约16亿元/a;节省污泥处置补贴6.9亿元/a。  SCWO处理印染污染物,可在几分钟内达到99.9%以上的去除率,无二次污染,有效地解决印染行业污染物处理难题,实现资源循环利用,促进印染行业的可持续发展。
西安交通大学 2021-04-11
青藏高原冻土及土壤碳变化的环境风险评估结果
《科学·进展》(Science Advances)在线刊登了清华大学水利系杨大文教授课题组题为“青藏高原多年冻土融化的碳排放风险( Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau)”的研究论文。这是该课题组近年连续在专业领军期刊发表多项关于青藏高原冻土变化的研究成果后,在青藏高原冻土变化对土壤有机碳的影响与潜在风险评估方面的又一重要研究进展。 北半球分布的多年冻土面积约占北半球陆表面积的1/4,其中环北极多年冻土区储存着大量土壤有机碳,约为当前大气中碳储量的二倍。近年来,随着气温升高与冻土退化,原本冻结在多年冻土层中的土壤有机碳,通过微生物分解以CO2、CH4等形式释放到大气当中,这些温室气体反馈到大气进一步加剧气温升高与冻土退化,形成冻土-气候的正反馈效应。青藏高原地区分布着环北极地区以外最大范围的多年冻土,有地球“第三极”之称。青藏高原多年冻土区储存的土壤有机碳可能成为气候变化背景下的潜在碳源,而这些冻土碳的空间分布尚不明晰,融化风险也亟待评估。基准期(2006-2015年)多年冻土活动层厚度与表层(0-3m)土壤有机碳分布杨大文教授团队整合青藏高原地区最新的冻土与土壤碳观测数据,模拟了青藏高原多年冻土与活动层厚度分布,基于数据驱动的机器学习方法得到青藏高原冻土碳空间分布信息,估算了青藏高原冻土有机碳的储量。结果表明,青藏高原土壤有机碳总储量约为50.43 Pg,其中37.21 Pg在当前气候条件下常年位于冻结的多年冻土层中。这一成果填补了全球已有冻土碳数据中关于青藏高原地区冻土碳分布状况的空白。不同排放情景下未来青藏高原融化冻土有机碳的变化预测该研究还首次评估了升温背景下青藏高原冻土有机碳释放对区域碳循环的潜在影响。随着气候变暖,至本世纪末青藏高原多年冻土层中储存的土壤有机碳约22.2-45.4%将发生融化,这一融化量可在相当程度上抵消了生物群系净固碳量,从而极大地增加了青藏高原多年冻土区从碳汇转变为碳源的风险。其中,3m以下深层冻土中有机碳融化量占冻土碳总融化量的比例高达29.6-46.2%,这一结果凸显了青藏高原地区深层冻土碳的重要性,弥补了现有研究仅关注浅层(0-3m)冻土碳释放的不足,为评估气候变化背景下冻土融化对区域乃至全球碳循环的影响提供了新思路。清华大学水利系博士生王泰华为论文第一作者,杨大文教授、杨雨亭副教授为共同通讯作者,合作者包括北京大学朴世龙教授、中国科学院青藏高原研究所李新研究员、中国科学院寒区旱区环境与工程研究所程国栋院士和中国科学院生态环境研究中心傅伯杰院士。该研究工作得到了国家自然科学基金、中科院战略性先导科技专项等项目资助。原文链接:https://advances.sciencemag.org/content/6/19/eaaz3513
清华大学 2021-04-11
湖南大学开发恶性前列腺癌的新治疗方案
来自湖南大学的张定校团队,联合罗斯威尔帕克癌症研究所的唐定国和刘松团队在Nature Communications上发表了题为Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer的文章【4】。该研究首次报道了人前前列腺癌PCa在其发生发展(包括临床治疗前后)过程中RNA选择性剪接的异常图谱;并揭示剪接体(Spliceosome)小分子抑制剂E7107可以有效地阻碍CRPC的耐药复发和恶性进展;提示靶向癌细胞的剪接体活性是一个新的治疗恶性PCa的临床策略。值得注意的是,E7107的一个减毒衍生物H3B-8800目前已经开始了在血液癌中临床实验(NCT02841540)。基于人临床PCa的转录组大数据,作者评估了不同恶性程度PCa组织(包括正常组织、原位癌、复发CRPC和终端致死性神经内分泌性前列腺癌(NEPC))中选择性剪接变异的整体情况,首次发现该剪接变异的异常程度与PCa的恶性程度密切相关。结合生信分析和功能试验,作者发现癌症的剪接异常主要通过影响相关基因的转录本转换(Isoform switch)来调控PCa的发生发展。由于内含子保留(IR)在不同的PCa发生和发展时期中呈现一致的上调变化,且是研究较少的一类AS事件,因此作者针对IR开展了进一步分析。结果显示IR是一个新的PCa恶性进展标志物,与PCa的侵袭转移能力和耐药性密切相关。另外,IR事件在正常胚胎干细胞和癌症干细胞中都明显增多,表明IR可能调控PCa的干性。随后,作者分析了IR的剪接机制,发现侵袭性PCa中IR的大幅度增多更可能受反式作用因子的调控。进一步分析发现,IR并不会导致相关基因的表达表达水平由于NMD(Nonsense-mediated mRNA Decay)而下调,且被保留的内含子可能还具有一定的编码能力,暗示了内含子保留IR在PCa中有一定的调控功能。作为一个控制雄性器官发育的关键转录因子,雄激素受体(Androgen receptor, AR)是PCa的driver基因。通过生信分析和细胞学试验,作者均发现AR可以显著影响PCa的AS图谱。结合受AR调控的AS相关基因和AR的转录靶基因,发现二者之间并没有明显联系,表明受AR影响的AS调控机制和转录调控机制是相对独立的。AS主要受剪接体的调控,作者分析了274个编码剪接调控因子的基因(Splicing regulatory genes, SRGs)在PCa中的突变情况。结果发现,绝大多数SRGs(~90%)的突变频率处于较低水平(<5%);SRGs在早期PCa中主要发生基因缺失,而在CRPC中主要发生基因扩增。大约68%的SRGs在PCa不同时期存在异常表达现象,且在CRPC中相对较多,表明侵袭性PCa对剪接体的异常活性有偏好依赖性。进一步分析发现SRGs可以作为PCa的独立预后因子。以上发现的临床价值在于靶向抑制剪接体的活性可能会抑制PCa的恶性进展。为此,作者利用剪接体的小分子抑制剂发现,癌细胞比正常细胞对E7107更加敏感;且E7107能重编程PCa的AS图谱,并激活一些抑癌基因的表达。在转录水平上,E7107可将CRPC的转录组逆转到恶性程度较低的原位癌状态。最后,通过体内移植瘤和MYC-driven PCa小鼠模型试验证实,E7107可以抑制PCa的整体AS水平,并通过促进细胞分化和抑增癌基因相关通路活性等,最终阻碍目前无药可愈CRPC的生长。
湖南大学 2021-04-11
针对光学微腔调控金属纳米颗粒电磁环境的实验
金属纳米结构中的自由电子振荡与外部光场发生耦合,形成局域表面等离激元共振,可以将光场压缩到纳米尺度。利用高品质因子光学微腔来调控金属颗粒的电磁场环境。相比于真空环境,光学微腔调制的电磁环境与等离激元共振模式有更强的耦合,增强了等离激元的辐射输出。高效的输出渠道使得能量不再集中于吸收区域,从而减小其热损耗。相比于真空中的金属颗粒,微腔调制的金属颗粒可以将单原子的辐射效率提升40倍,输出功率提升50倍。
北京大学 2021-04-11
光电子能谱和动量谱的高精度测量
实验上测量了800nm和400nm园偏振激光与Xe原子相互作用作用的多光子电离过程,通过冷靶电子离子动量谱仪,实现光电子能谱和动量谱的高精度测量。实验上,发现在400nm波长条件下,测量到可分辨多光子特征的电子能谱和动量谱结构。由于Xe原子具有很强的自旋轨道耦合效应,实验上观测到3/2P(红色箭头)和1/2P(白色箭头)引起的能级分裂的动量分布和能量分布.而对于1/2P能级,在园偏振激光作用下,可以选择性性激发自旋向下或自旋向上的电子 [图1(d)],因此,可以通过1/2P能级可以实现高自旋极化度的光电子。
北京大学 2021-04-11
常温常压水相电催化合成氨的研究
合成氨工业对国民经济与社会发展具有举足轻重的作用。目前,每年全球氨产量已超过亿吨,其中大部分用于农业生产以解决粮食与温饱问题,其它部分用作重要的工业原料。此外,氨还具有含氢量高(质量比达17.6%)、易液化等优点,有望成为重要的清洁储氢与储能材料,具有广阔的应用前景。然而,由于氮气分子非常稳定且难以活化,温和条件下合成氨反应难以迅速进行。工业上广泛采用的Haber-Bosch方法通过高温高压(300–500摄氏度,100–200个大气压)等苛刻条件来促使高纯氢气和氮气在铁基催化剂表面进行反应生成氨,其能量和氢气都来自于化石燃料(如甲烷等),表现出高能耗、高化石燃料消耗和高二氧化碳排放等缺点。合成氨工业消耗全球每年3–5%的甲烷与1–2%的能源供给,并产生1.6%的二氧化碳排放。寻找合适的绿色替代方案,在温和条件下实现高效、低能耗、低排放合成氨,成为亟待解决的科学挑战。 电催化氮还原反应(总反应为N2 + 3H2O  2NH3 + 1.5O2)提供了一种可持续合成氨的新路径。该反应在常温常压下即可进行,以大量易得的水与氮气(空气)作为反应原料,以可持续能源(太阳能,风能等)产生的电能作为能量来源,即可实现“零排放”合成氨。因此,不论是作为传统Haber-Bosch方法的潜在替代者还是作为新型清洁能源体系的重要组成部分,电化学合成氨技术都具有极大的发展潜力与广阔的应用前景。 然而,电化学合成氨技术仍面临重大挑战,其发展严重受制于现有催化剂非常低下的选择性与活性。若要将该技术实用化,就必须同时大幅提升催化剂的选择性与活性。然而,现有研究经验与理论表明,该反应催化剂普遍面临严重的“选择性-活性”两难问题:具有理论高活性的催化剂通常会导致激烈的析氢副反应,从而表现出低的反应选择性;而可能具有高选择性的催化剂对氮的吸附又过强,导致产物难以脱附,表现出过低的反应活性。因此,为取得电催化合成氨研究进展,大幅提高催化剂的选择性与活性,就必须突破现有理论,发展新型催化剂与催化体系。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 938 939 940
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1