高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
“飞秒-纳米时空分辨光学实验系统” 国家重大科研仪器
基于金属纳米粒子的局域表面等离激元因其高局域强度,小局域尺度,高灵敏度等特点,被大量应用在不同领域。但是,几个飞秒的超短模式寿命(dephasing time)大大限制了其应用的广泛性和实用性。该工作设计的多层结构实现了局域表面等离激元和传播表面等离激元的强耦合(图1(a))。动态数值模拟结果也清晰地证明在强耦合下局域表面等离激元模式和传播表面等离激元模式之间的能量交换。近场方面,光电子显微镜对表面等离激元模式进行直接成像,大大突破了原有的远场探测技术的限制。并且结合不同激发光源,实现不同维度的探测。结合波长可调的激光光源,光电子显微镜在频域记录下表面等离激元模式随波长变化的强度演化过程(图1(b))。结合超快泵浦探测技术,光电子显微镜在时域记录下表面等离激元模式随时间变化的演化趋势。该工作更加深入并直观地探测强耦合体系中的能量转换过程,并通过强耦合中失谐量的改变实现模式寿命的操控,相较于未耦合的局域表面等离模式,强耦合的模式寿命由6飞秒(10-15秒)提高到10飞秒。这一研究成果对进一步发展基于表面等离激元的人工光合成、生物传感等应用具有重要的指导价值。图1、(a)光电子显微镜和多层结构示意图,(b)远场和近场探测曲线、不同波长激光激发下光电子显微镜记录的局域表面等离激元模式分布图。 此研究是由北京大学和日本北海道大学共同合作完成,北京大学物理学院博士生杨京寰和重大仪器项目的国际合作者、北海道大学助理教授孙泉为该文章的共同第一作者,北京大学龚旗煌院士和北海道大学Misawa教授为共同通讯作者。除了自然科学基金委的国家重大科研仪器研制项目,该工作还得到了科技部、北京大学人工微结构和介观物理国家重点实验室、极端光学协同创新中心、“2011计划”量子物质科学协同创新中心、日本文部科学省及学术振兴会、北海道大学纳米技术平台等单位的支持。目前国家重大科研仪器研制项目“飞秒-纳米时空分辨光学实验系统”的研制正在有序推进中,已经取得了一批包括此工作在内的阶段性成果。该实验系统的核心仪器是附带低能电子显微功能的光电子显微镜(PEEM), 其激发光的波长覆盖范围从极紫外到近红外(图2)。下一步该实验系统有望在二维材料、光电材料与器件、表面介观物理等研究领域大显身手、发挥积极作用。图2、北京大学研究团队的飞秒纳米时空分辨系统
北京大学 2021-04-11
超高分辨率光矢量分析仪
超高分辨率光矢量分析设备采用“微波光子学方法”,首创具有国际领先水平的“超高分辨率光矢量分析技术”,集成了电-光、光-电和光-光3类元器件频谱响应的测量功能,可应用于光纤通信、光纤传感、光信号处理和集成光子学等领域。 技术特征 关键技术与创新点一:基于120度电桥的高抑制比光单边带调制技术和基于光载波抑制与平衡光电探测的非线性误差对消技术。 关键技术与创新点二:光频梳通道化测量技术和基于光希尔伯特变换的镜像边带抑制技术。 关键技术与创新点三:多种测量模式融合与系统软硬件集成技术。 工作波长:1528-1565 nm 最高波长分辨率:50 kHz(即0.4 fm) 幅度分辨率:0.01 dB 幅度精确度:±0.11 dB 相位分辨率:0.01° 相位精确度:±1.2° 对比国际上最高水平商用光矢量分析仪表LUNA OVA5000,设备的分辨率提升了4000倍,动态范围提升了31倍(15dB),相位精确度提升了2.5倍(单通道40GHz范围内),幅度分辨率也提升5倍以上,打破国外技术壁垒,实现进口替代。
南京航空航天大学 2021-05-11
超高分辨率光矢量分析仪
超高分辨率光矢量分析设备采用“微波光子学方法”,首创具有国际领先水平的“超高分辨率光矢量分析技术”,集成了电-光、光-电和光-光3类元器件频谱响应的测量功能,可应用于光纤通信、光纤传感、光信号处理和集成光子学等领域。技术特征关键技术与创新点一:基于120度电桥的高抑制比光单边带调制技术和基于光载波抑制与平衡光电探测的非线性误差对消技术。关键技术与创新点二:光频梳通道化测量技术和基于光希尔伯特变换的镜像边带抑制技术。关键技术与创新点三:多种测量模式融合与系统软硬件集成技术。工作波长:1528-1565 nm最高波长分辨率:50 kHz(即0.4 fm)幅度分辨率:0.01 dB幅度精确度:±0.11 dB相位分辨率:0.01°相位精确度:±1.2°对比国际上最高水平商用光矢量分析仪表LUNA OVA5000,设备的分辨率提升了4000倍,动态范围提升了31倍(15dB),相位精确度提升了2.5倍(单通道40GHz范围内),幅度分辨率也提升5倍以上,打破国外技术壁垒,实现进口替代。应用范围:设备已应用于包含海思光电子以及4家上市公司在内的数十家单位47种高端光器件的研发和生产(用户包括:华为、长飞光纤601869.SH、中航光电002179.SZ、航天电器002025.SZ、光迅科技002281.SZ等),其中31种高端光器件在本项目设备的支撑下实现了量产;在我国高速光电芯片、新一代光通信系统、工业互联网、智能感知等领域发挥着稳定的作用,有力支撑了我国核心光器件的自主可控和原始创新。
南京航空航天大学 2021-04-10
超高分辨率图像增强与显示芯片(产品)
成果简介:超分辨率图像重建技术是近年来发展迅速的图像处理新技术,其 目的是超越成像传感器、成像和信道的分辨极限,利用所获低分辨率图像, 实现高分辨率图像的重建。超高分辨率图像增强与显示芯片项目利用超分辨 率图像实时处理技术,实现从一幅或多幅低分辨率视频图像处理获得高分辨率图像,在图像被放大的同时增强图像更多的细节,提高图像的清晰度和分 辨率,实现摄像传感器的低分辨率与显示器高分辨率之间的匹配,解决目前 图像获取与显示分辨率不匹配的瓶颈问题,在现有图
北京理工大学 2021-04-14
一种基于硅基液晶的波长分辨监测方法
本发明公开了一种基于硅基液晶的波长分辨监测方法。基于硅 基液晶在同样的偏置电压下,对不同波长入射光有不同的相位调制的 特性,对在硅基液晶波长工作范围内的光信号实现分析与监测,并能 在入射光波长未知的条件下,对该波长进行测量,并能随着相位调制 精度的提高,提高波长的分辨精度。本发明元件少,系统结构简单紧 凑,对光路的准直要求不高,无需苛刻光路的耦合与复杂操作就能进 行波长的分辨,并且有着与入射光偏振态无关的特性,在分辨出波长 的同时,还能对入射光束的偏振态进行测量,适用范围更广。 
华中科技大学 2021-04-14
一种基于硅基液晶的波长分辨监测方法
本发明公开了一种基于硅基液晶的波长分辨监测方法。基于硅 基液晶在同样的偏置电压下,对不同波长入射光有不同的相位调制的 特性,对在硅基液晶波长工作范围内的光信号实现分析与监测,并能 在入射光波长未知的条件下,对该波长进行测量,并能随着相位调制 精度的提高,提高波长的分辨精度。本发明元件少,系统结构简单紧 凑,对光路的准直要求不高,无需苛刻光路的耦合与复杂操作就能进 行波长的分辨,并且有着与入射光偏振态无关的特性,在分辨
华中科技大学 2021-04-14
核安全壳高分辨率影像采集系统
本发明提供一种核安全壳高分辨率影像采集系统,包括移动平台、采集平台和控制中心,所述移动 平台包括框架,用于控制采集平台竖直位置并担负配重的电机总成,用于控制采集平台距离安全壳壳壁 距离的推拉杆装置,安装于框架底部用于控制采集平台及移动平台水平位置的轨道轮,控制箱,无线网 桥,以及用于采集平台上下移动限制控制的轨道绳;所述采集平台包括框架,固定在框架两侧用于沿着 安全壳壁采集照片的相机,固定在框架中间位置的集控箱,固定在框架上沿的光控照明灯,以及
武汉大学 2021-04-14
单细胞分辨率 3D 生物打印机
成果创新点 为再生医学、组织工程、神经科学、人工智能等领域 提供新的研究工具;为制造“细胞芯片”、构建“人工视觉”、 “人工听觉”的基本单元奠定基础;开发全新的高成功率 药物筛选技术和药物控释技术;打印人体组织或器官,为 构建和修复组织器官提供新的临床医学技术。 原理创新:采用谐振腔式液滴产生机构,解决单细胞 液滴的发生效率和速度的矛盾。同时降低细胞在打印中的 损伤。有效液滴产生数>
中国科学技术大学 2021-04-14
单细胞分辨率3D生物打印机
为再生医学、组织工程、神经科学、人工智能等领域提供新的研究工具;为制造“细胞芯片”、构建“人工视觉”、 “人工听觉”的基本单元奠定基础;开发全新的高成功率药物筛选技术和药物控释技术;打印人体组织或器官,为构建和修复组织器官提供新的临床医学技术。 原理创新:采用谐振腔式液滴产生机构,解决单细胞液滴的发生效率和速度的矛盾。同时降低细胞在打印中的损伤。有效液滴产生数>20000 个/秒。 技术创新:采用转盘式结构主体,安装多个打印头, 解决了换头时大体积打印头尺寸和行程的矛盾。 独到的设计思想:创新的低温打印头结构,解决了常规低温打印头存在的冷凝水问题。 
中国科学技术大学 2023-05-25
SDS6000 Pro系列高分辨率数字示波器
SDS6000 Pro系列高分辨率数字示波器,具有最高 12-bit 垂直分 辨率、优秀的本底噪声性能和垂直测量精度,能满足高精度的 测量需求。SDS6000 Pro采用鼎阳独创的SPO 技术,最大带宽1 GHz,采样率最高5 GSa/s,具备4个模拟通道和16个数字通道,存储深度可达 250 Mpts/通道。
深圳市鼎阳科技股份有限公司 2021-02-01
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 34 35 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1