高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
17KW三相两级式无变压器隔离并网发电逆变器
该成果采用两级式电路,两级式光伏并网逆变器一般是在逆变器前级加入一个 DC/DC变换器。前级 DC/DC 变换器主要完成最大功率点跟踪功能,通过控制太阳能电池板的输出电压 UPV 跟踪基准 Umppt,进而实现太阳能电池板最大功率输出, PI 调节器的输出与载波比较生成 PWM 信号控制 DC/DC 变换器的开关管。后级 DC/AC 环节主要实现并网功能和稳定直流母线电压功能。成果中两级式拓扑结构是由前级一个 Boost 变换器和后级一个全桥逆变器构成。
扬州大学 2021-04-14
一种D2D通信中频谱效率最大化的功率分配方法
本发明公开了一种D2D通信中频谱效率最大化的功率分配方法,通过分布式优化蜂窝用户的发射功率、D2D用户对的发射功率,在保证宏用户最低服务质量要求和D2D用户与蜂窝用户的功率限制的情况下最大化D2D用户的频谱效率。在给定蜂窝频带资源的情况下,最大化D2D通信的频谱效率等价于最大化D2D通信的和速率。本方法给出了在任何D2D用户都可以使用所有信道,并且任意信道可以同时被所有D2D用户占用的情况下,最优的蜂窝用户发射功率和D2D链路发射功率。主要用凸近似的方法将非凸问题近似为可求解的凸优化问题,并利用给出的闭式解快速收敛到凸问题的优化解。本发明具有收敛速度快,计算量小,易于实现,结果精度高等优点。
东南大学 2021-04-11
一种基于模糊概率的光伏电池的最大功率点的跟踪方法
本发明公开了一种基于模糊概率的光伏电池的最大功率点的跟 踪方法。所述跟踪方法包括:以ε为采样间隔,获得 N 个采样点 [ui,P(ui)],i 为小于等于 N 的正整数;其中,ε为 0.05UOC/Ns~ 0.5UOC/Ns,UOC 为光伏电池的开路电压,Ns 为光伏电池的串联数; 通过构造扩散函数 fD 和隶属度函数 fM,求取概率函数 Pro(i),对概率 函数 Pro(i)的结果从大到小排序,并依次选取排序靠前的概率对应的 Xi 的并集作为最大功率点的搜索范围,使得所述排序靠前的概率函数 Pr
华中科技大学 2021-04-14
考虑时空关联与数据隐私性的有源配电网分布式光伏功率预测技术
(一)成果背景 分布式光伏可在用户侧就近安装与消纳,减少因长距离输送带来的线路损耗问题,在新型电力系统建设中发挥着重要作用。2021年6月,国家能源局综合司发布了《关于报送整县(市、区)屋顶分布式光伏开发试点方案的通知》,用以推动分布式光伏高质量发展、支撑新型电力系统建设。在该政策的推进下,分布式光伏容量迅猛增长。截至2021年底,国内分布式光伏装机容量已达到107.5GW,约占光伏总装机容量的三分之一,且其增长速度已经超过了集中式光伏。 (二)痛点问题 对于配电网来说,光伏出力易受天气因素影响,具有极强的随机波动特性,大规模分布式光伏接入,一方面加剧了配电网负荷短时波动,影响电力实时平衡,制约负荷预测精度提升;另一方面,分布式光伏出力特性与负荷特性的不匹配造成其难以消纳,为有源配电网运行管理带来严峻挑战。 对于电力市场交易来说,随着新一轮电力体制改革的持续深入,分布式光伏所有者作为售电商参与市场竞争成为必然趋势。分布式光伏出力的不确定性与短时剧烈波动性,使得分布式光伏电站/售电商难以制定合理的市场交易策略与电力交易合同,面临严重的市场风险。 因此,亟需精准的分布式光伏功率预测,为有源配电网调度运行、分布式光伏消纳,分布式光伏参与电力市场等提供有力数据支撑。 (三)技术方案 1、基于变分模态分解与动态图卷积网络的分布式光伏功率预测 首先利用变分模态分解各分布式光伏复杂出力序列分解为相对简单、波动较小的不同频率子序列,以减小场站间关联关系的挖掘难度。然后,基于分布式光伏场站间时空关联性处于动态变化中的考虑,利用全连接神经网络将各节点特征映射到多维空间,而后利用时域卷积挖掘跨节点关联关系,由此以数据驱动方式挖掘各频率下各场站子序列关联性,有效实现子序列动态图结构的构建。最终,基于可用于非欧式空间结构数据建模的卷积神经网络,将其与动态图结构结合,建立考虑动态时空关联性的图卷积预测模型,针对不同频率下出力子序列分别预测,而后重构得到各场站功率进而获取配电网分布式光伏总功率。 2、基于深度联邦学习的分布式光伏发电功率预测 首先,基于长短期记忆神经网络构建时域自编码器模型,该模型编码器用于提取每个时间步输入的时域特征,而后利用解码器将该特征向量转换为输出序列进行未来时间步的预测,自编码能显著增强长短期记忆神经网络的时域建模能力。而后,利用注意力机制解决其在处理长输入时间序列时会导致解码器面临特征冗余问题,且使模型聚焦于对输出更关键的时域特征。由此,利用注意力自编码预测模型通过对时域特征的有效挖掘实现功率预测精度的进一步提升。 在此基础上,开发了用于分布式光伏功率预测的联邦学习框架,在该框架中,本地用户仅需将本地模型进行共享,无需数据的传输,而后由中央服务器进行模型的聚合以实现用户间信息共享。在各本地场站进行注意力自编码预测模型的训练;在中央服务器,基于联邦平均算法实现各本地预测模型的汇聚、全局模型的生成与下发。在保证数据隐私性的前提下取得与传统集中式机器学习训练近似的预测效果。 (四)竞争优势 1、有效表征广域分布式光伏集群间时空关联特征,实现分布式光伏功率预测精度提升。 当缺乏气象实测或预报数据时,考虑分布式光伏时空相关性可有效提升分布式光伏功率预测精度。现有研究多利用各光伏场站地理距离或者整体出力表征时空相关性。这种静态建模方式在分布式光伏出力模式长期稳定的情况下,可以取得较好的预测效果。然而,易受天气因素的影响,分布式光伏出力极易发生短时波动,因而各场站关联性处于动态变化过程。以恒定的场站间关联关系去考虑这种复杂的集群出力序列,显然无法反映天气影响下分布式光伏出力短时变化,难以实现功率预测精度的有效提升。 所提的基于变分模态分解与动态图卷积网络的分布式光伏功率预测方法,利用数据驱动方式实现挖掘各场站间关联特性的动态实时挖掘。在基础上,考虑到不同模态分量下各场站间关联关系的差异性,将各场站原始功率分解为了相对简单、波动较小的不同频率模态分量,减小关联关系的挖掘难度。 2、有效保证各分布式光伏数据隐私性,且能取得与传统集中式机器学习训练方式近似的预测效果 现有的数据驱动预测方法性能在很大程度上依赖于训练数据的数量,因此大多以一种集中的训练方式实现,即中央服务器汇聚来自各场站的运行数据而后进行模型的训练。然而,这种集中训练的方式会期限数据隐私,使用户信息暴露在公共环境而导致被外部攻击者进行数据分析、行为探测等。此外,在竞争激烈的电力市场中,分布式光伏场站所有者可能不愿共享数据。这些因素使传统模型训练方式难以实现。 所提的基于深度联邦学习的分布式光伏发电功率预测方法,利用注意力自编码模型在本地场站进行建模预测,实现对本地功率时域特征的有效挖掘;利用分散式训练的联邦学习框架,实现各场站预测模型信息共享,有效保证本地用户的数据隐私的同时取得不错的预测效果。 创新点 1、考虑了场站间关联关系的动态性。对于分布式光伏,虽然场站数量众多、分布广泛,但是其位置临近,由于云团运动等气象因素导致的相关性较强。所提方法以数据驱动方式根据网络当前的各场站输入功率进行关联关系的动态表征,实现功率预测精度的有效提升。 2、在保障各分布式光伏站点数据隐私应的前提现实现信息共享。利用自编码结构进一步提升LSTM的时间序列建模能力;利用注意力机制模型聚焦于对预测更关键的输入特征,以此实现时域特征的有效挖掘。在此基础上,利用联邦学习框架聚合各本地模型,实现各站点信息聚合,实现精度有效提升。 市场前景 随着新型电力系统建设目标的推进,分布式光伏装机容量呈爆发式增长。所研成果可应用于配电网负荷预测、用户可调度容量评估、激励型需求响应基线负荷估计等场景中,为高比例分布式光伏有源配电网的安全、经济、高效运行,维持电力平衡等工作提供重要参考。同时,随着分布式光伏逐步参与到电力市场,所研成果可为分布式光伏售电商制定最优的交易策略,签订合理的价格合同提供有力数据支撑。综上所述,所研成果市场前景广阔。
华北电力大学 2023-08-10
一种基于电压信号复合前馈的构网型VSG输出功率解耦方法
本发明公开了一种基于电压信号复合前馈的构网型VSG输出功率解耦方法,涉及电力电子控制技术领域,对构网型VSG功率同步控制的变流器输出电压信号复合前馈实现构网型变流器并网系统及实现变流器输出功率解耦的方法。包括构网型VSG功率控制模块、电网参数检测单元、线路阻抗观测器、虚拟阻抗压降前馈环路以及电压信号二次前馈环路。本发明的复合前馈控制策略结合虚拟阻抗和电压幅值与功角补偿,显著减弱了有功与无功功率的耦合作用,实现了高效解耦,适用于复杂电网环境。
南京工程学院 2021-01-12
嘉宾观点抢先看 | 李玉:通过系统性机制创新 为学科交叉融合提供保障
在第63届高等教育博览会 建设教育强国·高等教育改革发展论坛即将举办之际,中国高等教育学会联合人民网教育频道推出“建设教育强国”系列访谈栏目,重点邀请东北地区高校领导、专家学者,围绕活动主题:融合·创新·引领:服务高等教育强国建设,畅谈思考体会、凝聚发展共识。
人民网-教育频道 2025-05-16
RFID智能工具柜 | 斯科信息 - 物联网RFID智能自助借还管理系统
产品概述 斯科信息RFID智能工具柜是基于物联网射频识别技术的专业化资产管理系统,集成了先进的RFID读写设备、智能控制终端和多层安全验证模块。该解决方案实现了对工具、仪器设备的无人化自助借还、实时库存盘点和全生命周期管理,大幅提升企业资产利用效率和管理精细化水平。 核心技术特点 1. 智能识别管理系统 采用高性能RFID读写器与定制化天线阵列,确保99.9%的识别准确率 支持高频(HF)与超高频(UHF)RFID标签,兼容ISO15693、ISO18000-6C等多协议标准 专利抗金属标签技术,有效解决金属环境下的信号干扰问题 2. 多重安全验证机制 支持IC卡、指纹识别、人脸识别、密码验证等多种身份认证方式 可配置权限管理体系,实现人员-工具-权限三级对应 开门超时报警、非法取用报警、异常操作实时记录 3. 智能化管理平台 云端SaaS管理平台,支持多网点、多柜体统一管理 实时库存可视化看板,工具状态一目了然(在库、借出、待维修、报废) 自动生成工具使用报表、人员借还统计、工具利用率分析 工作流程 身份认证:用户通过IC卡/生物识别验证身份 智能借出:系统自动识别取出工具并记录关联信息 自动归还:关门自动盘点,更新库存状态 异常处理:未授权操作实时报警,支持工具追溯查找 数据同步:所有操作数据实时上传至管理平台 性能指标 盘点速度:整柜盘点≤3秒(200件工具) 识别准确率:≥99.9% 系统响应:<1秒 数据存储:本地存储≥10万条记录,云端无限扩展 环境适应性:工作温度-20℃~60℃,湿度10%~90% 行业应用解决方案 电力行业 安全工器具定期检测管理 绝缘工具有效期智能提醒 工器具使用培训记录关联 航空维修 专用工具校准周期管理 航材设备使用记录追溯 适航要求符合性管理 智能制造 生产线工具智能调度 使用时长统计与寿命预警 工具维护保养自动提醒 客户价值 管理效率提升:工具盘点效率提升10倍以上,人力成本降低60% 资产利用率优化:工具共享率提高40%,减少重复采购 安全管理强化:实现100%操作可追溯,安全事故降低80% 决策支持:数据驱动管理优化,提供精准的采购和报废决策依据 技术服务支持 斯科信息提供全生命周期服务: 需求调研与方案定制 系统部署与集成服务 操作培训与技术支持 系统升级与维护服务 📞 联系我们:19925314483获取行业解决方案详情与演示体验斯科信息技术团队为您提供专业的RFID工具管理咨询与定制化服务
深圳市斯科信息技术有限公司 2025-09-22
大长径比半直驱高效水平轴650千瓦海流能发电机组
浙大650千瓦机组在2017年就完成了厂内和现场并网发电试验。此后,浙大摘箬山岛海洋能试验电站根据国家需要,数次腾出650千瓦机组试验泊位为国内包括国电集团(和浙大共同承担国家自然资源部项目)、哈电集团、杭州江河水电等单位研制的300千瓦样机提供实海况试验支撑。其间,650千瓦机组也根据阶段性海试信息优化改进。此次疫后“复工发电”的改进型650千瓦机组,叶轮结构和工艺进一步优化,轴向推力载荷有所减小,防腐防砂抗磨损的性能进一步强化。我国东部沿海是世界上海流能功率密度最大的地区之一。浙江舟山群岛附近水道平均功率密度在每平方米20千瓦以上,开发环境和利用条件十分有利。日益成熟的海流能发电装备将有效满足无电、无水、无人岛屿和离岛的特殊供电需求,实现就地取能、海能海用。
浙江大学 2021-04-11
独立无刷双馈感应发电机无速度传感器直接电压控制方法
本发明公开了一种独立无刷双馈感应发电机无速度传感器直接 电压控制方法,将无刷双馈感应发电机的功率绕组 PW 电压矢量分解 为同步旋转坐标系中的 d 轴和 q 轴分量,调节控制绕组 CW 电流幅值 使 PW 电压的 d 轴分量收敛至 PW 电压的参考幅值,调节 CW 电流频 率使 PW 电压的 q 轴分量收敛至 0,当系统稳定时 PW 电压矢量与同 步旋转坐标系的 d 轴重合,于是同时实现了对 PW 电压幅值和频率的 控制。该控制方法省去了速度传感器,降低了发电系统的硬件成本, 提高了运行可靠性,并增
华中科技大学 2021-04-14
基于 FIR 数字滤波器原理的数字幅频均衡功率放大器装置
本实用新型涉及功率放大器技术,具体涉及基于 FIR 数字滤波器原理的数字幅频均衡功率放大器装 置,包括依次连接的信号预处理模块、前级放大模块、数字幅频均衡模块、DAC 后级滤波模块和功率 放大模块,与数字幅频均衡模块连接的 FPGA 模块,以及与 FPGA 模块连接的触摸屏模块。该放大器装 置基于 FPGA,以嵌入式处理器 NIOSⅡ为控制核心,输出功率可达到 10W,电路效率达 66%,经过数 字幅频均衡处理后,以 10KHz 时输出信号电压
武汉大学 2021-04-14
首页 上一页 1 2
  • ...
  • 50 51 52
  • ...
  • 569 570 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1