高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高压消解罐 水热合成反应釜
产品详细介绍高压消解罐食品行业重金属检测高压消解罐:高压消解罐用于重金属铅铬检测,样品前处理。高压消解罐,也称为高压消解炉、压力消解器、压力消解罐、密封熔样罐、溶样器、压力溶弹、水热合成反应釜、消化罐、聚四氟乙烯高压罐。 工作原理:食品检测专用高压消解罐利用罐体内强酸或强碱且高温高压密闭的环境来达到快速消解难溶物质的目的,是测定微量元素及痕量元素时消解样品的得力助手。样品前处理消解重金属、农残、食品、淤泥、稀土、水产品、有机物等。烘箱中使用温度可以达到200℃,压力5Mpa。 食品检测专用高压消解罐特点:1.安全。设计时,被动控温转为主动控压。即使温度失控,也不会有危险。2.消解效率高,能力强,能消解许多传统方法难以消解的样品,适应面广。3.密封性好,内杯凹凸榫槽设计。4.内杯元素空白值低,提高分析的准确度和精密度,降低了工作强度和对环境的污染。5.外罐内杯有相应编号,方便实验。6.成本低,使用简便。前期后期投入都很少,操作容易,操作人员使用前几乎不需要培训,维护简单。7.30ml及以下规格可定制成PFA内杯,耐温,承压,耐变形,耐渗透更优 高压消解法被我国有关部门认定为标准方法,比如GB/T5009、GB/T14962、GB/T6609、GB/T11914、GB/T17378、SN/T2004.1、2—2005、SN/T 1634-2005等。美国AOAC亦规定此法为测定As、Cd、Hg、Pb、Se、Zn等元素的样品标准分解方法高压消解罐:高压消解罐:又称消解罐、消化罐、水热合成反应釜、水热釜、压力溶弹、高压釜、闷罐等。外罐不锈钢,内杯采用优质的聚四氟乙烯材质加工而成。应用于纳米材料、化合物合成、材料制备、晶体生长等方面。以及气相、液相、等离子光谱质谱(ICP–MS)、原子吸收和原子荧光等化学分析方法的样品前处理,用于食品、地质、冶金、环保、商检、化工、核工等系统,消解农残、食品、稀土、水产品等有机物中Pb、Cu、Zn、Fe、Ga、Rb、Hg、Sn等重金属。    高压消解罐水热釜是利用罐体内高温高压密封体系(强酸或强碱)的环境来达到快速合成、消解难溶物质的目的,可使合成、消解过程大为缩短,且使被测组份的挥发损失降到最小,提高测定的准确性。多用于有机合成、萃取和水热合成等工作。  通过对GB/T5009.11-2003砷、GB/T5009.12—2003铅、GB/T5009.13—2003铜、GB/T5009.17—2003汞国家标准方法中样品前处理方法的探讨,透过现象看本质,它们具有相同的作用原理。经对比实验及重复性实验表明,重复性良好,RDS□5%,尤其在测定食品中易受污染的痕量铅及易挥发砷及总汞时,结果均优于其他样品处理方法。高压消解法实现了一份样品消解液同时对食品中砷、铅、铜、汞的测定,大大提高了工作效率,空白值低、挥发性元素不易损失,避免环境污染,认为高压消解法为标准分析方法。样品前处理能体现出实验室水平的差距。  在化工、材料、高分子等科学作为水热合成反应釜。  水热合成反应釜是在一定温度、压力条件下利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,或反应生成该物质的溶解产物,通过控制溶液的温度差使产生对流以形成过饱和状态而析出生长晶体。可用于纳米材料的制备、化合物合成、晶体生长等方面,也可以用于小剂量的合成反应,是高校极常用的小型反应釜。高压消解罐的特点:1.在烘箱中200℃内使用。在设计时充分考虑了安全性,由被动控温转为主动控压。罐体采用圆形榫槽密封设计,手动螺旋紧固密封性能好,避免了挥发性元素的损失;杯顶有泄气孔,安全系数高;2.我们有优质的稳定材料供应商,能保证内杯材料质量稳定,低空白值(更无黑点、黄点、微小裂痕等致命隐蔽缺陷)。材质、设计、生产工艺也决定整个样品前处理的结果;3.使用方便:内杯采用特殊设计,易于清洗;精密设备加工内壁光滑,不挂水:4.内外罐顺序编号,不混配,方便实验中样品的区分,提高实验的可重复性;5.消解效率高,能力强,能消解许多传统方法难以消解的样品,适应面广,可适用多个样品同时处理;6.消耗酸溶剂少,空白值低,提高分析的准确度和精确度,降低了工作强度和对环境的污染;7.规格齐全,可定向加工。规格:5  10  15  20   25  30  50  60  80  100  150  200  250  500ml
南京瑞尼克科技开发有限公司 2021-08-23
一种基于微滴预混和转印的气敏膜的并行合成装置及合成方法
本发明属于气敏膜合成技术领域,更具体地,涉及一种基于微 滴预混和转印的气敏膜的并行合成装置及合成方法,该气敏膜并行合 成装置包括限位载物台、控制模块、三维滑台、微滴预混模块和微滴 转印模块,微滴预混模块采用阵列蠕动泵和阵列微滴针头相结合来实 现气敏原材料预混,微滴转印模块采用气密自动微量进样器、图像定 位摄像头和预制定位膜的基片共同协调实现转印过程中的定量微滴和 气敏膜的精准定位定形。本发明还公开了气敏膜的制备方法。
华中科技大学 2021-04-14
解析致病菌细胞壁成分胞壁酸翻转酶结构功能机制
中国科大陈宇星教授、周丛照教授和孙林峰教授课题组合作阐明了金黄色葡萄球菌(Staphylococcus aureus)胞壁酸(WTA)翻转酶TarGH转运WTA的机制和TarGH特异性抑制剂Targocil的抑制机制。该研究成果在线发表在微生物领域专业杂志mBio上。耐甲氧西林金黄色葡萄球菌(MRSA)是主要的临床致病菌之一,其引发的感染难以治愈甚至可能致死。由于近年来抗生素滥用,出现了对所有的β-内酰胺类药物都具有抗性的MRSA菌株。研究表明S. aureus细胞壁主要成分WTA是引起耐药性的关键因素之一。在革兰氏阳性菌中,WTA是一类共价连接在肽聚糖上的阴离子多聚物。WTA在细菌分裂、生物膜形成、宿主定殖以及细菌感染等过程中起着重要作用。因此,WTA合成路径中的关键酶是新型抗菌药物的重要靶点。在S. aureus中,WTA合成前体是N-乙酰葡糖胺修饰的多聚核糖醇长链,其通过共价键连接在锚定在细胞膜上的脂质载体Und-PP上。该Und-PP连接的多聚核糖醇长链前体先在细胞内完成合成,最后通过ABC转运蛋白TarGH翻转出细胞膜。作为最具潜力的抗生素靶标之一,TarGH及其抑制剂得到广泛研究。先导化合物小分子Targocil是近期被鉴定出来特异性抑制TarGH效率较高的抑制剂,但是其抑制的分子机制并不清楚。为阐明TarGH转运WTA的机理以及Targocil的抑制机制,作者用冷冻电镜方法,解析了金黄色葡萄球菌WTA翻转酶TarGH的同源蛋白,来自Alicyclobacillus herbarius菌的TarGH结构。其同源性为50%。TarGH结构总体分辨率为3.9 Å,其核心结构区域分辨率达到3.6Å。由于未结合ATP,TarGH结构处于开口朝向细胞内的构象状态。基于结构,作者计算出了底物转运通道,通过对组成通道的氨基酸残基性质分析并结合生理实验,阐明了底物特异性识别机制。通过结构比对作者提出TarGH及其同源蛋白利用“曲柄连杆”原理来实现底物转运的分子机制。具有类似结构特点的ABC转运蛋白都可以利用这一机制通过相对微小的总体构象变化转运较大的底物。作者进一步通过生化实验和计算机模拟确定了Targocil结合TarGH的精确位点,并阐明了其抑制TarGH转运胞壁酸的分子机制。
中国科学技术大学 2021-04-10
重组大肠杆菌生产磷脂酶D及转酯化产品开发
"磷脂酶 D (PLD)是一类具有水解作用和磷酰基转移作用的酶, 在磷脂改性方面发挥着重要作用。它可以将大量磷脂酰胆碱(PC) 催化合成为自然界稀有的磷脂质,如磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)和磷脂酰甘油(PG)等,合成的磷脂质在医药和食品工业具有很大的应用前景。但由于来源不足和价格高,PLD的工业应用一直受到限制。本项目通过基因工程和微生物发酵技术,解决了PLD工业化应用中难表达和表达量不足的难题,利用重组大肠杆菌发酵实现了PLD的高水平表达,其酶活为106 U•L-1,产量为748 mg•L-1,分别比目前报道的最高水平提高了100倍和20倍;同时,本项目还建立了一种简单有效提取重组PLD的方法,可望大大降低PLD的生产成本。本技术先进,应用前景看好,如按106 U•L-1的发酵水平生产,成本约100元人民币/1000 U,目前市场售价在3000-6000元/1000 U,利润空间很大。 "
厦门大学 2021-04-10
一种α-半乳糖苷酶软胶囊饲料添加剂
其他成果/n本发明属于饲料添加剂技术领域,具体涉及一种α-半乳糖苷酶软胶囊饲料添加剂及其制备方法。该方法包括以下步骤:1)向磷酸盐缓冲溶液中加入α-Gal,然后加入β-CD,再经过均质后静置反应,至反应终点,得到α-Gal—β-CD添加液;2)将B型明胶加入水中,充分溶胀后加入甘油、防腐剂和二氧化钛,混合均匀进行胶化,得到胶料;3)灌装。通过本发明得到的软胶囊添加剂利用环糊精抑制剂对α-Gal的抑制作用,使动物饲料中的α-Gal酶活,经历一个先低后高的过程,从而使饲料中的α-Gal在更合适的消化时期发挥催化作用。
武汉轻工大学 2021-04-11
生物酶法制备纳米级功能性膳食纤维技术
本技术采用花生壳、小麦麸皮、大豆皮等农副产物为原料制备 纳米纤维素。首次采用生物酶结合超声波技术以农副产品为原材料制备纳米级 膳食纤维,克服了目前酸法制备纳米级膳食纤维污染重、周期长等缺点,建立 了一种高效、绿色、环保制备纳米级膳食纤维的新方法;首次开发出纳米级膳 食纤维及高纤维食品:包括面制品、淀粉制品、肉制品及功能性饮料制品等, 拓展了纳米级膳食纤维的应用范围。本项目所开发的纳米级膳食纤维功能性食 品,兼具优良口感与保健功效,具有良好的市场前景,对建设资源节约型和环 境友好型社会具有重要的促进作用。 生产条件及经济效益预测:纳米膳食纤维素的初步市场估价为 15 万元/吨。 项目投产后,年加工量 2000 吨的农副产物生产线,估算投资额为 8000 万,可 产生经济效益 2.55 亿元,实现利税 1.2 万元。年加工量 1000 吨的农副产物生 产线,估算投资额为 4000 万,可产生经济效益 1.275 亿元,实现利税 8400 万 元;年加工量 500 吨的农副产物生产线,估算投资额为 2000 万,可产生经济效 益 6375 万元,实现利税 3200 万元。
青岛农业大学 2021-04-11
速生阔叶材制浆造纸过程酶催化关键技术及应用
我国是世界上第一造纸大国,纸和纸板产量已超过全球总产量的25%。但我国木材资源匮乏,充分利用速生阔叶材资源、采用高效清洁制浆造纸技术是从根本上解决我国造纸工业面临的资源与环境问题的有效途径。陈嘉川教授领衔的科研团队在973计划和国家科技支撑计划等资助下,历经10余年,自主研究开发了酶促磨浆技术、酶促消潜技术、酶助漂白技术、酶精制纸浆技术等一系列制浆造纸酶催化绿色新技术,在降低磨浆能耗、消除有毒物污染、提升纸浆品质、改善抄造性能和研发高档纸基新材料等方面取得了突破,实现了国产木材资源的高效高值化利用。 先后在世界造纸十强企业山东晨鸣纸业集团和国内龙头企业山东太阳纸业股份有限公司等20余家骨干企业推广应用,用生物酶催化技术生产出了优质木浆,并用于高级纸基材料的生产,实现了速生阔叶材的高效高值化利用,并产生了重大的经济效益和社会效益。过2012-2014三年时间累计实现新增销售额130.1亿元,利润25.6亿元。
齐鲁工业大学 2021-04-22
一种抑制苹果汁酶促褐变的加工方法
已有样品/n一种抑制苹果汁酶促褐变的加工方法。  成果简介:本成果克服现有技术的不足,提供一种超声波协同护色剂抑制苹果汁酶促褐变的方法。本成果筛选出抑制酶促褐变的重要技术参数,对苹果汁加工过程进行优化,以期为苹果汁的褐变抑制提供新的方法。附带地,本成果利用圆二色谱、荧光光谱、粒径分析、电泳分析等分析技术对苹果汁中引起褐变的关键酶——多酚氧化酶进行结构鉴定,并且对经过超声波协同护色剂处理后,多酚氧化酶的催化能力及结构变化进行研究,为苹果汁加工中因酶促褐变引起色泽劣变,以及酶促褐变的抑制机理提供一定的理
华中农业大学 2021-01-12
关于蛋白质订书机酶实现高效多肽-多肽偶联反应
高效的 多肽 - 多肽偶联反应对于 制备蛋白 - 药物缀合物、调控蛋白质拓扑结构、生物成像 、化学生物学 等 领域 具有重要的意义 ,并因其可基因编码的特性 而 备受关注 。目前, 研究 报道 此类连接方法 并不太多 见 ,其中 分选酶( sortase ) 或 蝶豆粘酶 -1 ( butelase 1 ) 介导的偶联反应具有较好的底物 序列特异性 , 内含肽 ( intein ) 介导的蛋白质连接方法 可实现 可基因编码的高效主链连接, 而 转谷氨酰胺酶 ( transglutaminase ) 则 可以 介导 非特异性的 侧链异肽键 偶联 。近年来 , 多肽 - 蛋白质反应对 的 蓬勃发展 为此类工具 的 发展 提供了新的契机 。 已 有 谍连接酶( SpyLigase )和探连接酶( SnoopLigase ) 介导 的多肽 - 多肽偶联体系 见诸报道 ,但其效率仍 有 待提高, 而 其 细 胞内的应用前景仍有待探索。 最近 , 张文彬课题组发展了 独特的具有无序结构的 谍订书机 酶 ( SpyStapler ),可实现 谍标签 ( SpyTag )和北大 标签 ( BDTag )在 细 胞内和 细 胞外的高效偶联 (图 1 ) 。
北京大学 2021-04-11
一种具有增强的抑菌效果的噬菌体裂解酶
本发明将裂解酶Bp7e氨基酸的第99位亮氨酸和102位蛋氨酸分别进行突变为丙氨酸和谷氨酸,经原核表达技术得到了突变体蛋白并经Western-blot对其进行了鉴定,命名为Bp7c突变体蛋白。对Bp7e和Bp7e突变体蛋白进行了纯化及浓度测定,通过体外裂解实验及裂解谱检测得知,纯化的Bp7e和Bp7e突变体两种蛋白具有广谱的抑菌作用,对溶壁微球菌、金黄色葡萄球菌、沙门氏菌和多种血清型大肠杆菌均有裂解效果,且Bp7e突变体裂解效果整体优于天然裂解酶Bp7e。
青岛农业大学 2021-04-13
首页 上一页 1 2
  • ...
  • 38 39 40
  • ...
  • 98 99 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1