高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
我校天体物理团队在太阳暗条感应爆发研究领域取得新进展
我校物理与材料科学学院新组建的天体物理团队,与中国科学院国家天文台合作,在太阳暗条感应爆发研究领域取得新进展。 太阳暗条是悬浮于太阳高温稀薄大气中冷而密的等离子体。暗条爆发是触发太阳耀斑和日冕物质抛射等严重影响近地空间环境太阳爆发事件的重要诱因。多个暗条间的感应爆发是一种常见的暗条爆发形式,但是,由于高质量观测数据积累有限等客观条件的限制,对于此类暗条爆发完整过程的观测报道较为罕见,因此,相应的物理图像也难以获得直接的观测证据支持。近期,安徽大学物理与材料科学学院天体物理团队张军、宋志平、汪鹏和中国科学院国家天文台侯义军、李婷等人综合利用空基和地基太阳观测数据,并借助非线性无力场外推方法,对一个典型暗条感应爆发事件的完整物理过程进行了详细研究。从感应爆发发生前的磁场位型、发生时的观测特征和发生后的磁场重构等角度构建一个完备的演化证据链条,揭示了暗条感应爆发过程的完整物理图像,并指出发生在两个暗条上覆磁场间的外部磁重联及其造成的上覆磁场重构触发了暗条间的感应爆发。
安徽大学 2021-02-01
崔红娟教授团队在胶质母细胞瘤领域获最新研究成果
崔红娟教授团队在脑胶质瘤的发生发展机制方面取得重要研究进展。 胶质母细胞瘤是恶性程度最高的脑肿瘤,中位生存期在12-15个月,5年生存率仅为5%左右,严重威胁着人类的健康。由于胶质母细胞瘤极易产生耐药性,导致对化疗药物不敏感,再加上血脑屏障的原因,使得在临床治疗上的效果欠佳。因此开展其耐药性分子机制的研究对于胶质母细胞瘤的治疗具有重要的意义。 核仁纺锤体相关蛋白(NUSAP1)是一个微管结合蛋白,在有丝分裂的过程中有重要作用。团队围绕NUSAP1基因开展研究,发现NUSAP1在胶质母细胞瘤中高表达,与胶质母细胞瘤患者的不良预后密切相关。NUSAP1通过其NH2基末端的SAP结构域调控ATR的稳定性,进而维持胶质母细胞瘤细胞的恶性增殖和化疗耐药性。而下调该因子则显著降低了肿瘤细胞的增殖能力和耐药性。该研究为胶质母细胞瘤的靶向治疗及药物开发提供了有力的理论依据。
西南大学 2021-02-01
一种在超细钨丝表面电沉积铝镁合金薄膜的方法
本发明提供了一种在超细钨丝表面电沉积铝镁合金薄膜的方法。该方法克服了在有机溶剂、离子液体体系中电沉积铝镁合金薄膜存在镀液体系不稳定,原料成本高昂,镀液配置不易,使用寿命较短,制得的铝镁合金薄膜中镁含量较低等问题。该方法在低温无机熔盐体系中,氯化铝和氯化镁作为主盐,氯化钠和氯化钾作为支持电解质;以超细钨丝作为电沉积阴极,铝为阳极,控制电镀温度,电镀时间以及电流密度,在惰性氛围保护下进行铝镁合金薄膜在超细钨丝表面的电沉积。
电子科技大学 2021-04-10
多糖修饰的纳米硒复合物在恶性腹水治疗药物中的应用
本发明的目的在于提供多糖修饰的纳米硒复合物在制备治疗恶性腹水的药物中的应用。多糖修饰的纳米硒复合物由纳米硒和药学上允许的功能化多糖组成;所述功能化多糖包括但不限于葡聚糖、壳聚糖、真菌多糖(香菇多糖、香菇菌多糖、人参多糖、灵芝多糖、茯苓多糖、枸杞多糖、银耳多糖、木耳多糖)、植物多糖(枸杞多糖、银杏多糖、茶多糖、魔芋多糖)等天然或合成多糖的一种或多种。多糖修饰可以增强纳米硒的稳定性和活性,通过物理吸附作用使得纳米硒颗粒得以良好分散,增强纳米硒在降低炎症因子表达方面的功效。所述恶性腹水包括但不限于肝硬化、肝癌、卵巢癌、结肠癌、肺癌、乳腺癌等所引起的腹水。所述治疗恶性腹水的药物包括多糖修饰的纳米硒复合物及其药学上可接受的辅料。所述治疗恶性腹水的药物在给药治疗中,多糖修饰的纳米硒复合物的有效给药量为每天(9±4)mg/kg。所述的多糖修饰的纳米硒通过以下方法制得:1>将样品多糖溶解在去离子水中,加热以破坏分子内和分子间氢键,获得单链多糖;2>在25℃下将制备的单链多糖水溶液与亚硒酸钠混合,并搅拌均匀。向混合物中滴加抗坏血酸水溶液和丁二酸酐,室温下搅拌24小时。3>用超纯水透析2天即可得到产物。
南开大学 2021-04-10
不锈钢在强还原性介质中的腐蚀控制新技术及应用
不锈钢是工业、科技等领域应用最广泛的材料之一。不锈钢表面的钝化膜需要在氧化性环境中才能稳定地存在,因此不锈钢在氧化性环境中,例如大气、水环境、硝酸溶液等,具有良好耐蚀性,而在非氧化性或还原性环境例如高温稀硫酸、高温甲酸等介质中,由于表面的钝化膜不稳定,不能有效地保护基体,耐蚀性就很差;在含有能破坏钝化膜的有害离子的介质中,不锈钢的耐蚀性也很差。以化工、石化工业为例,在高温稀硫酸、高温甲、乙混合酸等介质中,奥氏体不锈钢腐蚀速度很快。由于温度较高,非金属材料在这种体系中不适用,国外部分企业采用耐蚀性更高的钛材或镍基耐蚀合金,但设备价格极其昂贵,同时材料来源和加工也非常困难。 该课题组研究开发了一种利用电沉积法在不锈钢表面制备钯系合金薄膜的技术,主要通过钯对不锈钢表面钝化性能的促进作用来提高不锈钢在非氧化性介质中的耐蚀性,并研究了在工程现场对不锈钢设备进行大面积施镀的技术。这种方法能够显著提高不锈钢在非氧化性腐蚀介质中的耐蚀性,例如,在沸腾稀硫酸和沸腾甲、乙混合酸中,镀钯不锈钢的腐蚀速率可以降低三到四个数量级,在含有微量Cl、Br离子的环境中,耐蚀性也显著提高。已获得国家发明专利授权2项,拥有完整的自主知识产权。
北京化工大学 2021-02-01
红花黄酮类滴丸制剂(SAFE)在治疗帕金森病中的治疗用途
帕金森病(Parkinson’s disease, PD)是一种由于中脑黑质部位多巴胺能神经元变性、缺失,导致黑质-纹状体多巴胺能神经系统失调,而引起的中枢神经系统退行性疾病,并最终导致患者运动功能的障碍,主要临床症状为静止性震颤、肌强直、运动迟缓和姿态不稳。药物流行病学显示,到2020年,我国60岁以上人口占总人口的比例将达19.3%,2050年则可能达到38.6%,中国老年人群慢性病患病率已达67.3%。全球有大约600万PD患者,且以每年20万左右的速度在增加,其中总人数的大约一半在中国。多巴胺替代疗法仍是PD治疗的首选策略,但不能有效地改变PD的病理进程,且副作用较多,如症状波动、异动症等,因此研发高效、低毒、新的治疗PD的有效药物迫在眉睫。传统中医表明,中药对PD有一定的治疗作用,副作用较少,因此受到越来越多的关注。 在本项目中,我们成功研发了红花黄酮类滴丸制剂(SAFE)可以作为一种有效的治疗药物来改善PD的治疗方案。我们建立了红花黄酮类提取物和滴丸的制备工艺,具有较好的稳定性和重现性,获得了红花黄酮类提取物的标准指纹图谱(图1),并将总黄酮含量不少于60%,两个指标成份K3R 和 AYB 各自的含量不少于 5%作为质量标准。它可以从多个方面改善PD的症状,包括改善动物行为学、保护黑质部位的多巴胺能神经元(图2-多巴胺能神经元)、并抑制α-synuclein的异常聚集或过度表达(图2-α-synuclein)、抗炎作用(图2-星形胶质细胞)、提高机体的抗氧化能力以及改善黑质部位细胞外间隙结构异常(表格1)等。
北京大学 2021-02-01
系列海洋监测浮标研制及在国家海洋环境监测中的应用
齐鲁工业大学(山东省科学院)海洋仪器仪表研究所王军成研究员主持完成的“系列海洋监测浮标研制及在国家海洋环境监测中的应用”项目成果获得国家科学技术进步二等奖。 该获奖成果瞄准我国海洋环境监测迫切需求,突破了浮标用传感器研制的关键技术,攻克了抗恶劣海洋环境、高可靠性、深海系留、拼装式浮标等技术瓶颈,研制了适用于近海、大洋和极区等极端环境监测的12种规格系列军民两用浮标产品,形成了我国浮标的系列标准,构建了我国海洋监测浮标技术体系,使浮标用传感器国产化率从10%提高到70%,扭转了浮标用传感器依靠进口的局面,显著降低了浮标平均故障率,使浮标在位可靠运行时间提高了三倍,观测数据接收率提高到95%以上,全面支撑了国家浮标网建设。
齐鲁工业大学 2021-04-22
李荣鹏教授团队在Science子刊Science Signaling发表最新研究成果
据李荣鹏教授介绍,人类基因组中编码功能蛋白的基因仅占基因总量的2%,其余98%的基因转录产物为非编码RNA,过去这类RNA一直被认为是冗余,其相关功能研究一直是空白。近年来,非编码RNA的研究逐渐成为国际热点,大量实验证据证明,非编码RNA控制着几乎所有的细胞生理功能。李荣鹏教授的研究在国际上首次证实了母系遗传的长链非编码RNA MEG3的4号转录产物,在肺部感染免疫过程中能够特异性表达,然后通过调节炎症因子IL-1b的表达水平,精准控制宿主的免疫反应。在感染过程中,肺泡巨噬细胞通过降低MEG3-4的表达量,释放出游离的小分子非编码RNA miR-138,然后miR-138结合到细胞因子IL-1b的mRNA 5‘UTR区域,形成剪切复合体降解mRNA,以维持IL-1b在体内的较低水平,防止过度的炎症反应杀伤细胞。这一结果深层次解析了MEG3-4调节宿主感染免疫的分子机制,同时也为推进MEG3-4作为RNA药物的应用提供了理论基础。
江苏师范大学 2021-04-28
一种在低信噪比情况下提取设备物理指纹特征的方法
本发明公开了一种在低信噪比情况下提取设备物理指纹特征的方法,接收机接收到低信噪比的信号后,在不破坏设备物理指纹的情况下进行降噪处理,然后从降噪后的信号中提取设备的物理指纹特征,方法中涉及的信号需要包括重复序列,或重复发送的多帧信号内有不变的部分,包括步骤:接收到低信噪比信号后,估计信号的频率和相位,估计信号重复序列上调制的信息数据,获得极性相同的多个重复序列,并将其对齐和叠加以提高信噪比;最后通过物理层指纹提取方法提取设备的物理指纹并用于设备身份识别。本发明可以在信噪比低的情况下有效地提取设备的物理层指纹特征,有效地解决了基于设备物理指纹的设备识别方法在现实应用中必须面临的低信噪比问题。
东南大学 2021-04-11
第一届中国科技青年论坛总论坛在北京成功举行
品读科技奋斗故事,领略青年意气风发。近日,第一届中国科技青年论坛总论坛在北京成功举行。这也标志着由中国科协主办的第一届中国科技青年论坛圆满落幕。 青年兴则国家兴,青年强则国家强。第一届中国科技青年论坛以“自立自强,创见未来”为主题,旨在深入开展学习贯彻习近平新时代中国特色社会主义思想主题教育,广泛动员青年人才为党和国家科技事业发展建言献策,从科研一线中发现一批面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康的创新型人才,为推动实现高水平科技自立自强贡献智慧和力量,以青春之名义践行强国有我的时代征程。我们深刻感受到广大青年工作者正在担负起民族复兴的使命,为全面建设社会主义现代化国家贡献着青春力量。 覆盖广泛,多地联动搭建交流平台 以奋斗为底色的时代,更需要激励着广大科技工作者勇攀科学高峰,不断向着科学的理想和高远的追求前行。在总论坛之前,本届论坛联动了北京、广东、山东、重庆等地方有关单位,共同举办了“世界科技前沿”“经济主战场”“国家重大需求”“人民生命健康”专题分论坛,并邀请了众多知名院士、学科专家、行业带头人作为评委专家,同青年人才就科技创新中的重点难点痛点等问题进行现场交流,给予指导与建议。 在北京“面向世界科技前沿”分论坛活动中,主办单位以瞄准世界前沿科技为核心议题,以国家下一代科学技术需求为导向,致力于解决“卡脖子”等技术难题;广东“面向经济主战场”分论坛则着眼于未来广东乃至全国经济的深度转型,聚焦“中国制造2035”等国家重大工程,为打造青年科技人才后备队伍积蓄动能;山东“面向国家重大需求”分论坛中则重点关注一批国家重点技术难题,积极探索众创空间、科技孵化器、大学科技园、科技产业加速器等链式孵化载体体系建设工作;在重庆“面向人民生命健康”分论坛中,主办单位以“人民至上,生命至上”为导向,立足医学科技领域与行业特点,探索科技技术在卫生健康领域的创新应用。 跨越祖国大江南北,第一届中国科技青年论坛以丰富的活动吸纳各方青年科技人才参与进来,广泛动员了青年人才为党和国家科技事业发展建言献策,为实现高水平的科技自立自强作出了积极的贡献。 反响强烈,为青年群体策论搭建广阔舞台 党的二十大报告提出,坚持创新在我国现代化建设全局中的核心地位。作为首届以青年科技人才为参与主体的科技论坛,第一届中国科技青年论坛受到了广大青年科技工作者的广泛关注和热情参与,积极展现他们在各自岗位上的创新成果。据了解,自本届论坛相关活动在去年5月启动以来,受到了社会各界的广泛关注和大力支持,来自270余家高校、科研院所、企业、全国学会、地方科协参与推荐的近3000名青年科技工作者结合自身科研经历,围绕科技创新中的重点难点痛点问题建言献策,涵盖了电子信息、先进制造、能源环保、生物医药、现代农业等众多前沿科技专业领域。 他们来自不同的行业、岗位,在平凡的工作之中演绎着不平凡的故事。在5月8日举行的总论坛上,10位脱颖而出的选手打开科技的想象空间,生动阐释他们的人生经历、前沿科研成果。最终一直专心于铌酸锂太赫兹强源方面的科学突破以及太赫兹技术的落地应用的吴晓君获得论坛大奖“科技新星奖”。在演讲结尾,她眼神坚定地说道:“我们所有的科研人员都将不忘初心,不负绍华,自觉履行高水平科技自立自强的使命担当,请党放心,科技强国,有我们!”这样铿锵有力的语调深深感染着在座的每一位观众和观看直播的网友。第一届中国科技青年论坛,正是要搭建这样一方展示前沿科技成果和科技工作者坚定信心的舞台,鼓舞着他们在科技的“大舞台”上继续建功立业,勇攀高峰。 影响深远,为科技创新发展积蓄动能 青年有梦想,国家有未来,民族有希望。第一届中国科技青年论坛由中国科协主办,是中国科协贯彻落实党的二十大精神和中央人才工作会议精神,加强对青年科技人才的政治引领的重要举措之一。回眸此次论坛,不仅充分展现了广大青年人才坚定创新自信、勇攀科技高峰的精神风貌,更广泛凝聚青春力量的价值共识,大家纷纷表示要不忘初心,鼓足干劲,书写用科技赋能新时代的华章。 中国科协将进一步贯彻习近平总书记在中央人才工作会议上的重要讲话精神,致力于打造联系服务有温度,学术交流有深度,战略咨询有高度,科学普及有热度,开放合作有广度的科技工作者之家,助推青年科技人才脱颖而出,引导支持青年科技人才服务高质量发展,为推动实现高水平自立自强奉献智慧和力量。 第一届中国科技青年论坛让广大青年科技工作者扬起青春之帆,绽放绚丽之花。期待广大的青年科技人才向着心之所想砥砺前行,迸发青春力量,展示青春风采!
央视网 2023-05-09
首页 上一页 1 2
  • ...
  • 34 35 36
  • ...
  • 100 101 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1