高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
X98增强型防护口罩
随着抗击新型冠状病毒战役的不断深入,以及人们自我防护意识的不断提高,口罩的使用全面普及。其中,以左右、上下对称的平面口罩用量最大。 但是,目前常用的平面口罩,包括一次性医用口罩,以及一次性医用外科口罩,存在脸颊两侧易泄漏、无法适应不同脸型等缺陷,防护效果不尽理想。 ZNX98增强型防护口罩的特点: 由交大航天连接技术研究所研发,浙江宇众特种装备有限公司生产的ZNX98增强型防护口罩,具有下列优点: 1、合理的三重褶皱布局,以及大小耳挂带的配置,有效降低脸颊两侧,以及下颚处的泄漏率。 3、既能满足增强防护使用需求,又能进一步满足人们对其安全性、可靠性、经济性的需求。   ZNX98增强型防护口罩,由一层防潮无纺布、一层过滤效率≥98%的熔喷过滤布、一层长纤无纺布,鼻梁条,大小两副耳挂带组成。 本产品使用时,覆盖使用者的口、鼻及下颚;适合在普通医疗环境(非有创医疗操作),以及公用电梯等小空间中佩戴。可有效阻隔口腔和鼻腔呼出或喷出的污染物,还可有效阻隔悬浮在小空间中气溶胶状的污染物。 本产品的主要性能指标: 1、泄漏率:≤25% (KN95口罩为20%~22%;平面口罩为45%~55%); 2、颗粒过滤效率(PFE):≥98%(KN95口罩为95%~97%;平面口罩为80%~90%);3、呼吸阻力30L/Min(Pa):≤46 Pa(KN95口罩为110Pa~140Pa;平面口罩为50Pa~60Pa)。
北京交通大学 2021-04-13
人体运动增强机器人领域进展
在动力大腿假肢控制研究中,如何实现复杂环境下“人-机-环”协调控制是一个挑战性难题。现有研究主要通过各类人机交互方式来解决上述问题,即期望通过各类人机界面信号识别人体运动意图以控制假肢适应环境。但目前人机界面信号难以达到期望中的可靠性和准确性。人穿戴假肢在环境中行走是一个典型的“人-机-环”问题,而现有研究缺少“机”和“环”之间的链路。 该研究探索假肢视觉对“人-机-环”回路的作用机制
南方科技大学 2021-04-14
SiC颗粒增强铝基复合材料
将高性能陶瓷增强体加入到金属的铝基体中,制成铝基复合材料,得到单一材料所不具有的强度、模量、塑性等各种优异性能,且性能可以通过人工设计和复合而进行控制。材料性能达到国际领先水平,建立了国内第一个航天铝基复合材料技术标准,形成了高性能铝基复合材料的批量、多品种研制和生产能力,并成功推广应用。
上海交通大学 2023-05-09
增强型人体运动康复泡沫轴
本项目提供了一种具有多次防护功能的吸能结构,用以解决现有溃缩式吸能结构无法多次使用的问题。 该结构具有多次防护功能,将外壳套设在吸能芯子的外周(如图1),将组装好的吸能结构安装于待吸能的设备上,当设备发生碰撞,外壳在外力的作用下发生形变进行吸能,吸能芯子受到外壳的作用力发生形变,与外壳的形变叠加吸能。该吸能结构,既能够将吸能芯子与外壳装配在一起使用,用于交通工具(如汽车)的防撞,可承受多次碰撞;也能够单独使用吸能芯子,如将吸能芯子设在复合材料(如泡沫轴)的内部,即吸能芯子作为泡沫轴的芯子,与刚性内轴的泡沫轴相比,由于吸能芯子形变能够提供额外(泡沫轴自身的形变也产生吸能效果)的吸能效果,增强了泡沫轴的吸能效果,进而与人体产生更多的相互作用,促进人体肌肉及骨骼组织的运动后恢复。该结构既可以与刚性外壳的形变与反弹作用结合增强吸能效果,也可以与软性材料的可回弹形变结合增强吸能效果。该吸能结构的材质由金属或高分子聚合物组成。考虑到吸能芯子由于具有连续交错的剪刀形合页结构,使用传统铸造式成型技术较难实现,使用机械加工方式实现难度也较大,形变单元采用3D打印的方式制作。 图1.整体结构示意图
北京理工大学 2022-10-31
纤维增强聚觇改性酚醛模塑料
内容介绍: 首创了一种环保型无污染合成酚醛树脂的新技术。在生产过程中无需 抽真空脱水,工艺简单,节约能源,树脂含量高,固化快,储存稳定, 解决国内外甲阶酚醛生产中长期存在的排放含酚、醛、醇废水对环境造 成污染的问题,具有重大的工程应用价值。 采用聚砚接枝和共混方法研制的改性酚醛塑料,全面提高
西北工业大学 2021-04-14
智能增强型震动探测器
产品详细介绍  Impaq Plus数字式震动探测器采,用最新科技piezo压电技术传感器与先进的微处理器技术、数字信号处理技术和智能信号处理计算技术相结合,对震动信号的频率、震幅强弱和持续时间进行精密的震动信号分析和处理以区分处理真正的攻击行为和自然环境的震动干扰,确保最佳探测性能和抗误报功能;特别适合用于保护ATM取款机、保险箱、金库和门窗等防敲击物体。 产品型号 Impaq Plus 工作电压 9V –16V DC 工作电流 <20 mA 工作温度 -00C ~+ 550C 存放温度 -200C ~+ 600C 最大纹波(震幅) 2Vpp 10Hz~150Hz@12VDC 报警周期 >2秒 最大湿度 95%非冷凝状态 灵敏度调节 双重可调节 LED灯指示 橙色:重度敲击,红色:报警,绿色:正常工作(闪烁), 轻度敲击(停) 防止误报技术 先进的微处理器技术、数字信号处理技术、智能信号处理计算技术,首次报警识别和报警记忆锁定功能 报警LED灯选择 开/关 报警继电器 防拆继电器 NC 350VDC/100mA 光声继电器 NC 24VDC/50mA 抗RF射频干扰 80MHz~1000MHz / 10 V/m 静电释放 无误报时±8kV 外壳材料 ABS防火材料 产品尺寸 86mm×25mm×21mm 重    量 40 g 相关认证 CCC、CE、UL、ISO9002
北京赢科迅捷科技发展有限公司 2021-08-23
船舶动力设备振动主动控制技术
        技术成熟度:技术突破         针对船舶机械设备减振降噪需求,提出了结构振动信息作为性能指标的主动减振控制策略。解决了船舶复杂应用环境下,主动减振技术“减振不一定降噪”的难题。攻克超低频、高出力密度主动减振系统执行机构的分析方法和设计关键技术,研发了系列化的电磁式作动器和主被动复合减振器,应用于船舶主机、辅机和管路系统振动抑制。突破了现有主动执行机构低频作动能力的瓶颈,发明了准零刚度作动器,有效覆盖国外探测技术的频率下限,解决了新一代船舶对超低频线谱振动和水下辐射噪声控制的迫切需求。提出了稳定性高、收敛速度快、扩展性强的主动减振核心控制算法并形成工程应用软件。突破了参考输入线谱增强、多频振动均衡控制、控制输出饱和抑制等一系列核心关键技术,解决了主动减振技术实船应用的稳、快、准的难题。研发了首套兼具工作过程自监测、运行故障自诊断、控制效果自评估功能的集成化、模块化主动控制系统,实现了主动减振系统100%国产化。解决了船舶机械设备主动减振系统关键部件自主可控难题。         意向开展成果转化的前提条件:船舶机械设备减振降噪
哈尔滨工程大学 2025-05-19
特高压设备用增强型环氧树脂体系开发与应用关键技术
芳纶基环氧树脂开发与应用 1、技术分析 低粘度液体芳纶基环氧树脂,既保留芳纶纤维的骨架结构又引入环氧基团,还引入柔性的醚键,与芳纶纤维及环氧树脂的相容性均较好,起到桥梁作用,可在不破坏芳纶纤维本体结构情况下,解决了芳纶纤维与环氧树脂基体间界面粘结性问题,同时也能增加环氧树脂基体的韧性;不改变现有复合材料生产工艺,可操作性强,可实现工业化大规模生产,具有非常强的国内外竞争力及产业化应用前景。 2、应用范围及目前应用状态 特种环氧树脂复合材料相比于金属材料,具有轻质、耐磨损的性能优势,用于大型客机、商务飞机、固体火箭发动机壳体和卫星等结构部件,可有效减轻机身自重,节约飞机燃料的使用。在新一代通信技术方面,芳纶可增加光缆的刚性和强度,广泛应用于室内外光纤和电力缆的增强件,对推动我国新一代通信技术的发展起到重要作用。在电子电器相关领域,日本松下电器公司在浸渗高耐热的环氧树脂固化芳纶无纺布上贴合铜箔而制成印刷线路基板。特种环氧树脂复合材料兼具优异的电绝缘和耐热性能等优点,可作为耐高温绝缘材料应用于电动机、变压器、电抗器等电力设备中,同时因其优异的力学性能也可用于绝缘拉杆及绝缘支撑器件。 目前应用状态:完成芳纶基环氧树脂增强E-51固化物应用研究,探索了芳纶基环氧树脂对芳纶织物-环氧树脂复合材料之间的界面性能的影响。 (1)芳纶基环氧树脂增强E-51固化物应用研究 选择环氧值为最大条件下制备的芳纶基环氧树脂,将芳纶基环氧树脂添加量分别为 E-51质量分数的2.5%、5%、7.5%与 E-51 混合后,经二乙烯三胺固化,根据国标制得标准样条,样条如图1所示。 (a)拉伸样条      (b)弯曲、耐冲击样条图1  固化样条 表1 掺入百分比的2号样品的固化物力学性能 2号样品掺入量 /% 拉伸强度 /MPa 断裂伸长率 /% 弯曲强度 /MPa 冲击强度 kJ/m2 0 31.55 1.65 107.08 5.42 2.5 60.08 3.11 96.04 7.96 5 68.94 3.96 128.65 11.25 7.5 44.64 2.54 97.07 11.34 如表1所示,掺入量的增加,固化物拉伸强度、断裂伸长率和弯曲强度均呈现先增后减趋势,在E-51中添加5%时,弯曲强度略有提高,拉伸强度提高2.2倍,断裂伸长率提高2.4倍,抗冲击强度提高2.1倍。主要是因为芳纶基环氧树脂液体本身具有刚性苯环,同时也含有柔性的烷基侧链,并以环氧基封端,提高了与树脂基体的相容性,将刚性结构交联到体系当中,提高了体系的力学强度,因此掺入芳纶基环氧树脂液体后拉伸强度和断裂伸长率均提高了。而冲击强度保持上升趋势,掺入量超过5%后基本不再发生变化。 (2)芳纶基环氧树脂对芳纶织物-环氧树脂复合材料制备 取一定量环氧树脂,常温下加入一定比例的芳纶基环氧树脂,再将固化剂(DEDDM)加入到上述混合物中(胺值与环氧值等当量),搅拌均匀后,再按真空干燥箱中,抽真空30min。采用手糊法制备芳纶织物/环氧树脂复合材料,铺好后盖上离型纸放入80℃压机中加压,使树脂与芳纶纤维布浸渍,将平板硫化机升温至140℃,将脱模布和离型纸放入,铺厚3mm放在模具中,将140℃/1MPa下保压15min,再将压力升至10MPa,保温固化2.5h,冷却至室温开模,如图2所示。 图2  芳纶织物-环氧树脂复合材料 3、前景及经济社会效益分析 本项目根据芳纶纤维和环氧树脂的结构特点,设计和制备一种具有“两亲结构”的新型芳纶基环氧树脂。该树脂具有芳纶的骨架结构和环氧丙烷的侧链。分子中的芳纶骨架部分与芳纶织物纤维的结构相同,有利于两者之间的互相亲和。而芳纶基环氧树脂分子中的环氧基团与环氧树脂的结构具有相似性,与环氧树脂具有很好的相容性。芳纶基环氧树脂能广泛应用于电缆增强、防弹背心、运动织物、登山绳、防割手套和绝缘纸产品中,带动更多收益效应。 蓖麻油基环氧树脂开发与应用 1.研究背景及意义 目前我国已是世界上塑料制品生产和消费最大的国家,环氧树脂具有优异的粘接强度,良好的介电性能,制品尺寸稳定性好、硬度高、柔韧性较好、对碱及大部分溶剂稳定,是一种常见的应用非常广泛的热固性树脂塑料,目前全球环氧树脂年产量达到250万吨左右,需求量巨大。其中双酚A型环氧树脂用量最广泛,占环氧树脂总量的85%以上,67%以上的双酚A型环氧树脂则依赖于石化资源,同时其存在着毒性问题。 目前,国内外对于生物基热固性树脂的研究相对越来越热,其中,植物油以其来源广、产量大、价格低的优势,而备受广泛研究,目前有关植物油基增塑剂和环氧树脂的研究主要包括大豆油基、桐油基、蓖麻油基、甘油基、松香基等。 蓖麻是世界十大油料和四大不可食用油料作物之一,我国是世界上栽培蓖麻和生产蓖麻籽的主要国家之一,种植面积和产量曾一度跃居世界第一,蓖麻油是重要的化工原料,称作“土地里种出的石油”。 蓖麻油的基本结构: 羟基平均官能度约2.7,羟值为156~165 mg/g,碘值80~90 g/100g,皂化值为170~190 mg/g。 2.技术路线 (1)环氧蓖麻油缩水甘油醚的合成(ECOGE) 环氧蓖麻油缩水甘油醚的合成采用液体酸多相催化法,其原理是有机酸被过氧化氢预氧化为过氧化有机酸,再将蓖麻油缩水甘油醚氧化为环氧蓖麻油缩水甘油醚,反应原理如下式所示。 (2)蓖麻油多元醇的合成(COP) 选择不同催化反应体系,使用甲醇、乙醇、丙烯醇、苯酚、苯甲酸、丙烯酸等不同柔性、刚性基团对环氧蓖麻油环氧基团进行开环加成,增加分子中羟基,制备蓖麻油多元醇,为下一步蓖麻油多缩水甘油醚制备提供基础。此反应过程中,酸催化体系下发生亲电加成反应,碱催化体系下发生亲核加成反应,在开环过程中,注意避免酯键发生水解或者酯交换反应。 (3)蓖麻油多缩水甘油醚的合成(COPGE) 将上述蓖麻油多元醇与环氧氯丙烷反应,生成蓖麻油多缩水甘油醚,此反应有两种方法合成,一种是羟基与环氧氯丙烷发生开环闭环两步反应,最终生成缩水甘油醚;第二种方法是羟基和环氧氯丙烷直接一步法制得缩水甘油醚,但是环氧氯丙烷用量大。 3 蓖麻油基环氧树脂的结构与性能参数 (1)蓖麻油三缩水甘油醚(XY966) 环氧值:0.15~0.25 eq/100g 粘度(25℃):150~450mPa·s (2)氢化蓖麻油三缩水甘油醚(HCOGE) 环氧值 : 0.18 eq/100g 粘度(25℃) : 850 mPa·s (3)环氧蓖麻油三缩水甘油醚(ECOGE) 环氧值 :0.38 mol/100g 粘度(25℃) :650 mPa·s  (4)苯氧基蓖麻油多缩水甘油醚(POCOGE) 环氧值:0.24 eq/100g; 粘度(25℃) :950 mPa·s (4)苯酚-蓖麻油基多缩水甘油醚(PCOGE) 环氧值: 0.24 eq/100g; 粘度(25℃) : 1550 mPa·s (5)蓖麻油九缩水甘油醚( CONGE ) 环氧值:0.31 eq/100g, 粘度(25℃) :6050 mPa·s 3.本项目的特色与创新之处 (1)项目特色 1)本研究所采用的原料蓖麻油是植物基可再生资源,所合成的蓖麻油基环氧树脂是低毒环保可降解物质; 2)本研究采用酰化和环氧化反应,分别制得具有很好柔韧性的环氧乙酰蓖麻油,和具有很好刚性的环氧苯甲酰蓖麻油两种增塑剂; 3)本研究以柔性的蓖麻油为原料,引入刚性基团,合成一系列柔性和刚柔兼备蓖麻油基环氧树脂。 (2)项目创新之处 1)研究采用酰化和环氧化反应,分别制得具有很好柔韧性的环氧乙酰蓖麻油,和具有很好刚性的环氧苯甲酰蓖麻油两种增塑剂,反应步骤少,处理简单。其中环氧乙酰蓖麻油拉伸效率高于DOTP,而环氧苯甲酰蓖麻油的拉伸强度和断裂伸长率均高于DOTP,可应用于刚性需求高的场合; 2)本研究将蓖麻油碳碳双键环氧化后开环,后与环氧氯丙烷反应制得高环氧值的蓖麻油基环氧树脂,提高了固化物的交联密度,提高了环氧树脂的拉伸、弯曲等性能。 3)本研究在柔性的蓖麻油分子链中引入刚性基团,解决了蓖麻油基合成一系列刚柔兼备蓖麻油基环氧树脂,赋予环氧树脂配方良好的柔性、抗冲击性和耐热冲击性能。
南京林业大学 2021-05-10
用于增强免疫力的石金钱龟提取物、制剂及制备技术
中试阶段/n该成果公开了一种用于增强免疫力的石金钱龟提取物,它是将石金钱龟的龟肉和龟甲分别用水和乙醇进行提取,龟肉提取液和龟甲提取液分别浓缩、干燥后,按0.5-3∶1的比例混合制成的。本发明还公开了该提取物的制备方法和含有该提取物的制剂,以及该制剂的制备方法。所制得的石金钱龟提取物具有显著的增强免疫力的作用,由该提取物制得的胶囊剂含药量大,性质稳定,在正常室温条件下可贮存两年,不吸潮,不变质,口感好,服药顺应性佳,患者在服药时和服药后不会感觉到难受的腥味。
华中农业大学 2021-01-12
VR教育/虚拟学科实验室/3D教学/虚拟现实
      云幻科教虚拟学科实验室解决方案,根据国家课程标准中的实验要求,运用虚拟仿真技术构建虚拟学科实验室,构建高度仿真的虚拟实验环境和实验操作对象,学生可以自主选择不同实验,在虚拟的环境下进行实验观摩、模拟实验、拓展训练等操作,在虚拟实验的互动体验中更深入的学习知识。虚拟学科实验室由3D教育资源云平台与虚拟现实互动设备构成,优质丰富的教学资源与先进的教学设备联合打造优质的实验教学环境。 虚拟学科实验室的分类: 虚拟化学实验室:涵盖中学化学实验100多个,如中和反应、还原反应、二氧化碳的性质、镁在空气中的燃烧等 虚拟物理实验室:涵盖中学物理实验接近200个,如摩擦力、压力、浮力、光的折射等 虚拟生物实验室:涵盖中学生物实验80多个,如动植物细胞、细菌、光合作用等。 虚拟生物实验室:涵盖中学生物实验80多个,如动植物细胞、细菌、光合作用等。 方案特点: 交互式操作,培养实践动手能力 实验素材丰富,为探索提供多种选择 虚拟实验器材,节省资源损耗 正确操作指引,规避实验风险
云幻教育科技股份有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 689 690 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1