高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
新冠病毒大数据交叉学科研究平台
日前,国防科技大学系统工程学院大数据与复杂网络研究团队同四川大学、电子科技大学一起,组建新冠病毒大数据交叉学科研究平台,助力新型流行病研究和防控,给多个省份和国家有关部委等提供了8份数据分析报告和决策建议报告,为防控和战胜疫情贡献出了科学智慧。国防科技大学系统工程学院大数据与复杂网络研究团队基于新冠病毒大数据交叉学科研究平台,利用海量多源异构大数据,结合疫情发生发展规律,对人群流动及传播风险进行了综合建模和分析,为政府决策提供了参考依据。特别是团队通过分析春运期间人口流动大数据,建立起疾病传播模型,测算出了疫情扩散蔓延阶段武汉市向全国各地区的输出人口状况和新冠病毒感染的风险指数。还有许多研究人员尝试通过客运数据,研判各个地区及城市的感染风险。也有学者采用“百度迁移”所提供的人口流动数据,通过春运期间从武汉流向全国各省市的人口规模(不包含港澳台数据)和全国感染病毒人数的可视化分布,直观解读两者间的联系。同时加以推断,武汉封城之后,二次传染所造成的病毒传播将日趋占主导地位,传播程度和各省市的人口密度以及管控措施等密切相关。
电子科技大学 2021-04-10
基于大数据的能源互联网能量管理系统
随着电网数据规模越来越大,所蕴含的价值也越来越多。清华大学信研院研发了基于机器学习方法的能源互联网能量管理系统,主要功能为对电网的稳定性进行预测和可视化。系 统分为训练部分和预测部分。训练部分通过历史数据进行机器学习,建立一个电压稳定性的 分类器。分类器训练完成后,再对新增的未知数据进行预测。训练部分主要分为特征提取、 类别标记、特征压缩、分类器类型选择。预测部分主要分为分类器数据启动阶段和预测输出 阶段。本系统提出利用机器学习方法对电网电压稳定性进行预测,进一步综合多个节点给出 电网态势感知的评估结果。在训练每一个节点分类器的时候,本系统将特征选取的时段和预 测时间节点拉开,形成一种延时的预测方法,本发明对复杂系统有着更好的还原效果。2 应用说明本系统实施电压稳定性预测的具体步骤为:步骤 1:通过部署在关键测点的同步相角测量单元 PMU 采集电网实时数据,所述 实时数据包含电网中每个关键测点的电压 U、 有功 P、无功 Q、电流 I;分别计算 U 的衍 生量 dU/dt,Q 的衍生量 dQ/dt,电压的变化 量比上无功的变化量的衍生量 dU/dQ,用这 些衍生量作为特征,来表征量的时间变化速 率;步骤 2:对步骤 1 中提取的特征进行数 据降维与压缩;根据特定时刻电压 U 是否恢 复到标准值的 0.8 倍来区分每组样本组是否 稳定,用 0 标记稳定,用 1 标记不稳定;步骤 3:选择分类器,建立一个电压稳 定性的分类器;步骤 4:训练分类器;当分类器训练完 成后,将训练好的参数储存起来;步骤 5:进入预测部分的数据启动阶段, 填充特征矩阵,没有输出;步骤 6:把多个节点的特征按照顺序排列,形成特征矩阵;特征矩阵填充完成后, 根据分类器给出的预测结果;特征时段向前滑动,最初的特征被抛弃,新特征补充在队尾, 分类器持续给出预测结果;步骤 7:每隔一定时间间隔 ,要把新收集来的数据与以前的数据一起,重新回到步骤 4 训练分类器,更新参数。在具体系统搭建过程中,我们充分利用现有机器学习平台。其中 Hadoop 的文件管理系统 HDFS 负责数据存储;Spark 负责模型训练;Storm 负责在线预测;Kafka 负责在 Storm 和Hadoop 之间传递更新后的模型参数。
清华大学 2021-04-11
基于大数据技术的患者医疗健康信息服务系统
北京工业大学 2021-04-14
基于NC-Link的工业大数据采集设备
【技术领域】 光电子技术、智能制造 【痛点问题】 我国目前正在进行智能制造的数字化转型,智能制造的基础工业互联网,工业互联网要求工业设备进行互联互通,工业设备互联协议主要被国外垄断,包括美国的MTConnect和欧洲的OPC UA。NC-Link是具有自主知识产权的国产工业设备互联协议,是中国国家标准(智能工厂数控机床互联接口规范GB/T 41970-2022),基于NC-Link进行工业大数据采集将会打破基于国外协议的工业数据采集设备的垄断。 【成果介绍】 项目研制NC-Link适配器和代理器。NC-Link适配器外接在工业控制系统的主机上(例如数控系统、机器人、PLC)等,自动把工业系统的生产数据(电压、电流等)和设备的属性数据采集后转换成NC-Link格式,然后传送到NC-Link代理器,再传送到产线服务器或云端数据中心,供工业应用软件,例如MES、ERP、远程运维、质量检测、数字孪生等系统使用。项目采样周期可以到毫秒级,支持工业大数据和双向数据传输。项目可用在工业互联网领域,用来统一数据采集标准,可以实现自主可控,解决卡脖子难题。 本项目研发基于自主知识产权的工业互联协议NC-Link采集设备,用来对工业设备生产的大数据进行采集,拟解决的核心技术问题和主要研究内容如下: 1)研究NC-Link与其他国内外工业协议的适配技术,建立NC-Link装备模型。 2)研发NC-Link适配器,NC-Link适配器可适配国内主要的工业设备和支持国外工业协议的工业设备。 3)研发NC-Link代理器,用来在NC-Link适配器和工业应用系统之间进行数据缓存和转发。 4)研发NC-Link数据接口,用来连接NC-Link代理器和NC-Link适配器,同时连接工业应用系统和NC-Link代理器。 5)研发NC-Link安全可信模块,支持可信计算、数据安全、网络安全、基于身份的接入认证。 6)研究基于NC-Link的数据采集技术,研发基于NC-Link的工业大数据采集设备。 【技术优势】 NC-Link目前是国家标准(GB/T 41970-2022),产品基于该国家标准,与同类产品相比是自主知识产权的产品,是解决卡脖子的技术。在技术上优势包括:支持毫秒级数据采集,支持数据安全和网络安全,集成了可信3.0技术。 【技术指标】 a) 最小采样周期≤1ms; b) 适配工业协议种类≥30; c) 支持全双工数据传输; d) 支持身份认证,传输加密,访问控制等安全功能; e) 支持可信3.0技术。 【技术成熟度】 原理样机/验证。 【发展规划】 1)2023年,研制原理样机,在智能制造场景展开应用验证。 2)2024年,研制工程样机,进行工程验证;成立公司进行融资。 3)2025年,进行产品定型和销售,销售额500万。 4)2026年,销售额2000万-5000万。 【知识产权】 团队拥有多项自主知识产权。
华中科技大学 2023-07-11
【关注】教育大数据创新发展学术论坛
第62届中国高等教育博览会——教育大数据创新发展学术论坛
中国高等教育博览会 2024-11-11
南京智农云芯大数据科技有限公司
南京智农云芯大数据科技有限公司(简称AgriBrain)是一家专注农业领域大数据分析与人工智能解决方案的高科技公司,基于自主研发的无代码AI平台GrowthBrain、自动化表型引擎PhenoBrain和高精度全基因组选择算法平台GSBrain,旨在为科研、教育和企业用户提供低成本、高效率、智能化的AI解决方案。 GrowthBrain无需编程简单拖拽即可实现海量算法训练和分析,傻瓜式设计无需用户具备算法背景,旨在降低AI应用门槛让用户更专注自身业务领域。PhenoBrain可以使得客户根据自身场景进行快速的本地分析、调用或集成,同时相比业内高昂的表型平台,具备低成本、高个性化等优势;GSBrain中的全基因组选择算法,经三组数据实验数据验证比当前国际开源算法稳定提升 9%~45%,可更高效的进行子代筛选和更精准的指导基因编辑。 公司核心团队由美国上市公司的研发、南农等顶尖高校的机器学习、表观遗传、农学等专业背景成员组成,合作客户包括上海交大、中国农大、上海农科院等知名单位。 
南京智农云芯大数据科技有限公司 2024-03-12
安徽大学地理空间大数据人工智能团队在无缝全天候地表温度数据研究上取得新进展
由于受到云、气溶胶等不利天气的影响,基于热红外遥感反演的地表温度数据存在空间不连续问题,阻碍了地表温度产品的实际应用。
安徽大学 2022-06-01
智能热处理技术
上海交通大学 2021-04-11
高性能XMLXML数据处理技术
北京工业大学 2021-04-14
融合架构的高时效可扩展大数据分析平台
大数据应用的多样化 需要的计算模型、数据模型多样化; 目前每类模型需要单独的开源系统来支持(如HDFS、HBase、Neo4j、MongoDB,Flink,Spark,Tensorflow等)。 多系统导致大数据分析平台非常复杂、效率低下。研究目标:研究和开发面向新型多计算模型融合架构的、高时效、可扩展的新 一代大数据分析支撑系统与工具平台FAST(Fusion-Architecture, Scalable, Time-efficient big data analysis platform)。针对目前大数据分析平台复杂、效率低下的痛点,该系统具有三个 方面的优势:首先,这套系统采用融合架构,一方面实现关系、图、键 值、文档等多种数据模型的高效融合,另一方面实现批处理计算、流计 算的深度融合,并可以通过SQL扩展语言来进行多模型的统一查询,实现高效的跨模型查询。其次,对于复杂系统来说,时效性非常重要,这 套系统采用融合架构提高效率是实现高时效的基础,更重要的是,我们 对大数据分析从数据到用户进行了端到端的全栈时效优化。最后,对于 大数据应用来说,系统扩展性非常重要,本系统在资源层、存储层和计 算层进行了全面的扩展性优化。下面在融合架构、高时效和可扩展这三 个方面,分别详细介绍FAST系统的三个主要亮点。融合架构FAST系统的第一个亮点是融合架构,我们在技术方面的创新主要包 括多数据模型融合和多计算模型融合两方面。多数据模型融合:设计和研发了多模型数据管理与查询引擎,支持关系、图、键值、 文档等多种数据模型,实现了查询解析、查询优化、元数据管理、数据 分布等功能,将多种数据模型进行统一管理和深度融合。同时扩展了SQL语言,通过统一的查询接口支持对关系、键值、图、文档等数据进行独立访问或者跨模型查询。经过试验,多模型数据融合查询,比Spark 2.3.4的查询时间能平均减少70.7%。目前spark等现有系统还需要手工编程方式来实现跨模型查 询,所以FAST系统在易用性上也表现良好,降低使用门槛,提高开发效率。多计算模型融合:在计算层实现了最常见的批处理计算和流计算深度融合,批流融合的核心方法是在系统内部实现批和流的统一表达,批是对有限数据集 的运算,流是对无限数据流的计算,我们设计了UCollection结构对批和 流数据进行统一表达,通过识别的bounded标志,来确定是批、流、或批流融合。有了统一表达,可以开展一系列融合优化来提升系统性能。 并且对上通过Unified API统一用户的批、流接口,实现二者在编程范式上的统一表达。对于批流混合的计算,融合架构系统的查询延迟比Flink 1.4.2能减少57%,吞吐量平均可以提升到6.72倍。高时效FAST系统的第二个亮点是高时效,即缩短大数据分析的时间消耗, 提高效率。由于大数据分析平台是一个非常复杂的系统,为了做到高时效,系统不能存在性能短板,因此需要对大数据分析的整个过程进行端到端的全栈时效优化。如图中所示,自下而上,需要在多模态存储、批流融合、机器学习、人工操作各层都进行优化。对于多模态存储,面向应用负载和异构硬件特征进行自适应优化;对于批流融合计算,在统一表达基础上,进行系列融合优化技术, 包括DAG优化、迭代优化、部署优化、操作符优化等;在机器学习层面,进行模型优化、消息优化、梯度优化、概率优化 等来提高时效;而且我们也考虑到大数据分析过程中用户人工操作的时效性问题, 通过智能地进行大数据分析方法和模型的推荐,来缩减人工操作的 时间。可扩展FAST系统的第三个亮点是可扩展,由于大数据应用规模很大,数据增速快,对系统可扩展性的要求非常高,为此我们在系统的资源层、 存储层和计算层进行了全面的扩展性优化。在资源层,系统都部署在云计算的虚拟化资源之上,利用了云计算资源的弹性机制进行系统扩展。并在系统中实现了可伸缩调整模块, 能实时监控软硬件系统的状态,按照应用需求来自适应地进行弹性伸缩。在存储层,分布式存储系统扩展性的关键在于分布式共识和一致性 协议(Raft),因此提出了KV-Raft、vRaft等进行Raft的扩展优化。在计算层,我们扩展了机器学习模型的参数规模,使系统可以支持 到百亿级别的超大规模机器学习模型训练,并且性能方面有明显提 升。亮点成果:融合架构大数据分析平台目前已经在阿里巴巴双十一进行示范应用。 从2020年11月10日至11月16日一周的时间,在阿里的生产环境中,研发 的系统一直连续稳定运行,基于淘宝和天猫的实际用户信息进行大数据 分析,综合运用了本系统的存储、计算、机器学习等多个模块的能力, 累计进行了184亿件商品推荐。同时在双十一期间,基于智能交互向导技术,也面向电子商务应用 的卖家提供了“生意参谋”应用,基于大数据分析,帮助卖家分析产品 销量变化的原因,以及促销的有效手段等。
中国人民大学 2021-04-10
首页 上一页 1 2
  • ...
  • 8 9 10
  • ...
  • 301 302 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1