高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
多阵列忆阻器存算一体系统
随着人工智能、大数据、物联网、区块链等新一代信息技术兴起,数据量呈现爆炸式增长,传统计算系统的算力难以满足海量数据的计算需求。与此同时,摩尔定律逐渐放缓,单纯依靠提高集成度、缩小晶体管尺寸来提升芯片及系统性能的路径正面临技术极限,通过引入忆阻器新器件、模拟计算新范式、存算一体新架构,将拓展出全新的高性能人工智能芯片与系统,实现计算能力的飞跃。 目前被广泛使用的经典冯·诺依曼计算架构下数据存储与处理是分离的,存储器与处理器之间通过数据总线进行数据传输,在面向大数据分析等应用场景中,这种计算架构已成为高性能低功耗计算系统的主要瓶颈之一:数据总线的有限带宽严重制约了处理器的性能与效率,且存储器与处理器之间存在严重性能不匹配问题。忆阻器存算一体系统把传统以计算为中心的架构转变为以数据为中心的架构,其直接利用阻变器件进行数据存储与处理,通过将器件组织成为交叉阵列形式,实现存算一体的矩阵向量乘计算。忆阻器存算一体系统可以避免数据在存储和计算中反复搬移带来的时间和能量开销,消除了传统计算系统中的“存储墙”与“功耗墙”问题,可以高效、并行的完成基础的矩阵向量乘计算,未来极有潜力成为支撑人工智能等新兴应用的核心技术。 清华大学吴华强教授团队实现了材料与器件、电路设计、架构和算法的软硬件协同等多方面原始创新,解决了系统精度损失等被广泛关注的难题: 材料与器件创新。科研团队选择了电学特性稳定的二氧化铪作为忆阻层核心材料,提出了通过插入少量氧化铝层来固定离子分布、抑制晶粒间界形成的新理论,提出了引入热增强层的新原理器件结构,成功抑制了忆阻器非理想特性的产生。 电路设计创新。开发了一套忆阻器与晶体管的混合电路设计方法,提出“差分电阻”设计思想,采取源线电流镜限流设计,抑制了忆阻器电路中可能产生的各种计算误差。 算法创新。提出了混合训练算法,仅用小数据量训练神经网络并只更新最后一层网络的权重,即可将存算一体硬件系统的计算精度达到与软件理论值相同的水平。 “技术链”创新。从“单点技术突破”拓展到“技术链突破”,开发了针对忆阻器存算一体芯片的电子设计自动化(EDA)工具,打通了从电路模块设计到系统综合再到芯片验证的设计全流程。 上述理论和方法发表于《自然》《自然·纳米技术》《自然·通讯》等国际顶级期刊,以及被誉为“集成电路奥林匹克”的“国际固态电路大会”等顶级学术会议。研究成果被“国际半导体技术路线图”和30多部综述文章长篇幅引用。团队已在该研究方向申请国内外专利72项,其中30项已获得授权,知识产权完全自主可控。 团队已研制出全球首款忆阻器存算一体芯片和系统,集成了8个忆阻器阵列和完整的外围控制电路,以更小的功耗和更低的硬件成本大幅提升了计算设备的算力。全系统的计算能效比当前主流的人工智能计算平台——图形处理器(GPU)高两个数量级。团队还设计了一款基于130nm工艺研制的完整忆阻器存算一体芯片,在MNIST数据集上计算速度已超过市面上28nm工艺的四核CPU产品近20倍,能效有近千倍的优势。
清华大学 2021-02-01
多阵列忆阻器存算一体系统
项目成果/简介:随着人工智能、大数据、物联网、区块链等新一代信息技术兴起,数据量呈现爆炸式增长,传统计算系统的算力难以满足海量数据的计算需求。与此同时,摩尔定律逐渐放缓,单纯依靠提高集成度、缩小晶体管尺寸来提升芯片及系统性能的路径正面临技术极限,通过引入忆阻器新器件、模拟计算新范式、存算一体新架构,将拓展出全新的高性能人工智能芯片与系统,实现计算能力的飞跃。
清华大学 2021-01-12
基于同质器件架构的感算存一体化神经形态硬件
该成果创新性地基于二维半导体的硅基同质器件,首次提出了类脑功能的“传感-计算-存储一体化”神经形态芯片架构,实现了光电传感、放大运算、信息存储功能的一体化集成,为突破冯·诺依曼瓶颈和实现类脑智能提供了一种全新思路。 缪向水教授团队,长期从事相变存储器芯片、存算一体忆阻器芯片技术研究。2018年出版了国内第一本忆阻器专著《忆阻器导论》,2019年团队93项三维相变存储器芯片专利许可给芯片公司并合作开发产品,并与行业龙头企业合作建立了联合实验室,推动存储器芯片技术的成果转化以及未来引领技术的探索。曾荣获国家科技进步奖2项、湖北省技术发明一等奖1项。 同质晶体管-存储器架构的原理及器件结构 缪向水团队长期从事相变存储器芯片、存算一体忆阻器芯片技术研究。2018年出版了国内第一本忆阻器专著《忆阻器导论》,2019年团队93项三维相变存储器芯片专利许可给芯片公司并合作开发产品,并与行业龙头企业合作建立了联合实验室,推动存储器芯片技术的成果转化以及未来引领技术的探索。曾荣获国家科技进步奖2项、湖北省技术发明一等奖1项。
华中科技大学 2022-08-12
基于相变材料的片上光电存算一体化器件的研发
现阶段所设计的存算一体器件单元结构如图 1 所示: 器件的基本结构由波导和功能层(由下到上分为加热层、电极层、保护层、相变材料(硫系化合物)层)所构成。拟通过在当前流行的绝缘层上硅(SOI)光子平台上集成四氮化三硅光波导的方式实现器件的光学读取功能,即在非常厚的硅衬底层上生长一层绝缘层二氧化硅和波导层,然后在基片上通过光刻、显影、刻蚀等工艺制备四氮化三硅波导。功能层主要用于实现器件的电学写入功能。加热器层的主要用途是与相变材料层形成电接触,通过较小的接触面积使接触处的热量集中,从而可以在较小的电压或电流下使相变材料发生相变。因此需要加热器层具备较好的导热和导电性能,同时在近 C 波段具有较低的光损耗,可采用石墨烯。电极层可用于提供相变材料器件单元所需要的编程电脉冲。当前拟采用硒掺杂的相变材料合金(如 GSST)作为器件的核心功能层的相变材料。该材料在通信/非通信波段显示了极低的光损耗和更高的品质因数,且相变前后在通信 C 波段具有足够大的光学常数反差,可在更恶劣的高温环境下进行操作,适用于硅基光子器件应用。 采用的主要技术手段包括: ① 依托于相变材料的电致和光致相变特性,通过电学编程、光学读取的方法实现器件的存储、算术运算和逻辑运算功能:  存储功能的实现:拟利用相变材料晶态低透过率和非晶态高透过率分别代表二进制中的‘1’和‘0’,实现数据存储(编程)功能。例如在电极两端施加合适的电脉冲,所产生电流流经加热层时,生成的热量主要集中在加热层和相变材料层接触处,使得接触处的相变材料发生相变,实现存储功能。在完成上述编程操作后,从器件波导输入端输入读取连续光。由于相变材料功能层对光强的吸收能力在编程和非编程区域间存在着显著的差异,因此当输入光经过波导后,其能量会因为相变材料编程区域的吸收而发生改变,进而显著改变输出光强能量。所以通过测量输入输出光强的能量之比(即透过率),可实现对先前编程区域的读取。  算术和逻辑功能的实现:通过调整编程电脉冲的幅度和宽度可以动态调控相变材料的相变程度,使得器件的中间透过率值可用于代表不同的数值,实现多级存储功能。所以拟采用输入脉冲数量对应加数的方法实现标量加法计算。同时由于所设计器件的读取连续光输出功率可视为读取连续光输入功率和器件透过率的乘积,因此可采用将输入功率和透过率作为被乘数和乘数的方法实现基本乘法运算。除此之外还可以将器件功能层的初始状态设置为非晶相,把晶化脉冲幅值和不足以产生晶化的脉冲幅值分别作为输入逻辑‘1’和‘0’;同时设定一个判定阈值并与编程后器件透过率的变化率进行对比,把高于和低于阈值的透过率变化率分别作为输出逻辑 ‘1’和‘0’;通过合理选择编程脉冲有望实现各种逻辑功能输出。 ② 基于器件透射率可调特性验证其实现神经突触的可行性。并依托所设计人工突触构建人工神经网络芯片,实现图像、语音和文本识别功能:  突触可塑性是大脑记忆和学习的神经生物学基础,也是人工类脑器件需要实现的首要功能。为实现突触可塑性,拟把相变材料和波导之间的耦合区域视为仿生神经突触,左右两端电极分别代表突触前和突触后,分别施加在两端电极上的电脉冲则作为突触前和突触后刺激。通过调节从左右两端电极输入耦合区域的电脉冲时间差对耦合区域的光透过率进行连续调控,进而依托于上述存算理论模型和实物器件仿真和实验实现仿生神经突触的脉冲时序依赖可塑性(Spike-Timing-Dependent-Plasticity, STDP)。  将不同波长的光脉冲序列输入所设计的突触单元, 经过相变材料的作用,脉冲强度发生变化,对应于乘法器。进而借助于微环结构,将不同波长的脉冲导入进同一波导中,该功能类似加法器。相加后的脉冲光强较小时,读取光与微环发生共振,在输出端口没有光强输出。当光强达到一定的阈值后,读取信号不再和微环发生共振,而是传播到输出端口。这一过程类似神经元脉冲信号的激发,实现了非线性激活函数的功能。利用上述的单个神经元结构,验证其监督式机器学习和非监督式机器学习。对于监督式机器学习,权重的数值通过外部管理器设置;对于非监督式机器学习,不再需要外部管理器来设置权重值,而是通过输出光脉冲进行反馈控制,调整权重值。在单个神经元结构的基础上,更复杂的光学脉冲神经网络结构,证明该结构的可扩展性。拟设计的神经网络中的每一层结构包括三个功能单元,即收集器、分发器和神经突触结构。收集器将上一层不同波长的光脉冲信号收集到同一根波导中,分发器将光脉冲分发给多个神经元,神经突触结构则产生光脉冲信号,输入给下一层结构。基于上述结构实现图片、语音和文本的识别。 创新性分析:①首次研究了一款基于“电学编程、光学读取”模式的光电混合存算一体化器件。与传统电学存算一体化器件相比,拟研发的器件可以进行长距离的信息传输,具有传输带宽高、信号间延迟低、损耗低、抗干扰、集成密度高等优点。②采用硒(Se)掺杂的相变材料作为存算一体化器件的核心功能材料。与采用其他相变材料的存算一体器件相比,以硒参杂的相变材料作为功能材料的存算一体器件有望展现出极低的光损耗。③提出了一种基于“电学脉冲刺激、光学权重调节”的人工神经突触。该突触器件有望成为未来通用型人工神经突触,填补了光电混合型人工突触的技术空白。 先进性分析:①所提出的光电混合工作模式使得该存算一体化器件不但具有传统集成电路的高密度特性,且兼具光通信技术的宽频带、低延迟、抗干扰的优越性能。②所采用硒参杂的相变材料不但继承了传统材料具有的快速相变转化速度、低功耗和稳定性强等特性,且本身在通信波段非晶态透明的同时还保持了相变前后足够大的光学性能差异的特点。③所设计的突触继承了人工电子突触和全光突触的优点,具有高集成度、低功耗、超快响应时间、稳定性强等优点。 独占性分析:根据已取得成果正在撰写专利,以获得该关键技术的独有权。 
南京邮电大学 2021-05-11
一体水槽
生物实验室设备|实验室通风设备|实验室水槽|实验室水龙头|实验室工作台|实验室操作台|实验室仪器设备|试验室设备|实验室家具|实验室家具生产商请到育人教仪,我们将以最诚挚的服务,最合理的价格,最完善的售后对待每位顾客。 备注:以上是一体水槽的详细信息,如果您对一体水槽的价格、型号、图片有什么疑问,请联系我们获取一体水槽的最新信息。 咨询电话:0577-67473999
温州市育人教仪制造有限公司 2021-08-23
动力传动一体化控制技术(技术)
成果简介:该技术适用于车辆发动机或发动机和变速箱的一体化匹配仿真、控制和标定技术。成果可以分为三个部分:动力传动一体化的匹配仿真技术,动力传动一体化控制系统软硬件技术,动力传动一体化控制系统的参数标定和试验技术。可以进行发动机和变速箱的系统的匹配、控制和标定开发,也可以就单项技术进行技术转让或合作开发。发动机的控制内容包括:汽油机的点火、喷油和怠速空气量的动态和稳态协调控制,具有空燃比的闭环控制功能。变速箱的控制功能包括:换档控制、液力变矩器闭锁和滑转率控制、变速箱液压油路主油压控制。一体化控制功
北京理工大学 2021-04-14
动力传动一体化控制技术
Ø  成果简介:该技术适用于车辆发动机或发动机和变速箱的一体化匹配仿真、控制和标定技术。成果可以分为三个部分:动力传动一体化的匹配仿真技术,动力传动一体化控制系统软硬件技术,动力传动一体化控制系统的参数标定和试验技术。可以进行发动机和变速箱的系统的匹配、控制和标定开发,也可以就单项技术进行技术转让或合作开发。发动机的控制内容包括:汽油机的点火、喷油和怠速空气量的动态和稳态协调控制,具有空燃比的闭环控制功能。变速箱的控制功能包括:换档控制、液力变矩器闭锁和滑转率控制、变速箱液压油路
北京理工大学 2021-01-12
动力传动一体化控制技术
该技术适用于车辆发动机或发动机和变速箱的一体化匹配仿真、控制和标定技术。成果可以分为三个部分:动力传动一体化的匹配仿真技术,动力传动一体化控制系统软硬件技术,动力传动一体化控制系统的参数标定和试验技术。可以进行发动机和变速箱的系统的匹配、控制和标定开发,也可以就单项技术进行技术转让或合作开发。 发动机的控制内容包括:汽油机的点火、喷油和怠速空气量的动态和稳态协调控制,具有空燃比的闭环控制功能。 变速箱的控制功能包括:换档控制、液力变矩器闭锁和滑转率控制、变速箱液压油路主油压控制。 一体化控制功能包括:基于总线的数据共享、换挡品质控制(包括换档过程发动机降扭矩、变速箱主油压、液力变矩器解锁等)、汽车动态过程发动机喷油量和扭矩控制、车辆行驶安全控制等。 改装后的轿车操作简便,可以自动地在各挡位间切换,换挡过程平稳,车辆起步、加速性能良好。样车的等速油耗和ECE工况油耗测试结果:60km/h等速油耗为5.82L/100km,ECE循环油耗9.75L/100km。
北京理工大学 2021-04-13
光机热一体化设计技术(技术)
成果简介:在航空航天领域,光电仪器受温度影响会产生像移,成像质量会 变差,影响探测。本技术将光学设计、结构设计、有限元分析、光学表面自由曲面面型拟合结合起来,可以分析在恒温和瞬态温度变化的情况下,成像 质量的变化,进而给温控提供准确的技术方案和技术途径。 项目来源:横向项目 技术领域:信息技术 应用范围:航空航天光电探测领域 现状特点:国内领先 技术创新: 本技术将光学设计、结构设计、有限元分析、光
北京理工大学 2021-04-14
经济作物水肥一体化技术
经济作物水肥一体化技术是将灌溉与施肥融为一体的现代农业青岛农业大学科技成果介绍 2017 -26- 新技术,在加压灌溉条件下,灌溉与施肥相结合,将化肥按照科学配方溶解在 灌溉水中,根据作物对水分、养分的需求规律和土壤中水分、养分的状况,把 水分和养分适时适量地输送到作物根部土壤的一种新型灌水施肥技术,该技术 将传统的大肥、大水漫灌浇地施肥改变为根系局部浇作物的精准施肥。技术可 节水 30~60%;节肥 30~50%;增产 10~20%;减少农药 15~30%;节省施肥 打药劳动力 10~15 个。减
青岛农业大学 2021-01-12
1 2 3 4 5 6
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1