高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高性能工业机器人控制系统
针对点焊(弧焊)机器人和重载搬运机器人的应用,开展机器人控制器核心技术相关研究,研究开发自主知识产权的高性能低成本的工业机器人控制器,实现工程应用。研究工业机器人控制器核心技术,完成控制器的研究与开发并实现工程化,实现示范应用及产业化目标。可达技术指标序号名称规格1插补周期4ms2重复定位精度20um3直线度40um4联动轴数六轴5伺服驱动接口脉冲6插补方式关节,直线,圆弧,曲线7上位机(示教器)LINUX+QT8下位机(控制器)UCOSII9加减速功能直线型和S型10语言标准安川 inform II指令系统11PLC功能内部软PLC,标准支持32输入/32输出点,可扩展128输入/128输出。128个定时器,128个计数器12现场总线接口RS485,RS232,CAN 一、系统关键技术 1.工业机器人控制系统的软硬件体系结构: (1) 基于领域建模的开发方法 研究面向机器人控制器开发的领域建模方法, 通过对机器人控制系统共性的提取和功能及非功能属性的抽象, 借助形式化描述及工具集成实现机器人控制系统在模型层的仿真和验证, 并研究可重用实时组件设计方法,使得开发的重点从底层代码转向机器人领域应用。 (2) 基于组件的开放式控制器的软件结构 根据机器人控制的特点和开放性的要求,研究机器人组件模型,组件划分方法,组件间的通信机制,连接配置方法以及系统的调度模型,并研究开放式机器人控制器的一般开发流程,开放式平台下多传感器机器人的控制方法。 (3) 开放式控制器模块化硬件结构 根据开放性的要求,研究硬件模块的划分方法,便于系统添加或更换各种接口、传感器等;采用基于标准总线的结构;研究多CPU系统的设计方法;研究基于FPGA的接口设计方法。 (4) 机器人操作系统 根据机器人应用需求,在开源操作系统的基础上增加机器人应用层接口、机器人算法,中间件,增强实时性能的任务调度算法。 2.高速、高精度工业机器人轮廓控制技术和柔性加减速技术: (1) 速度前瞻控制和拐角控制技术 前瞻处理的主要任务是获取路径信息,并根据速度、加速度和加加速度等机器人运动约束条件和选定的加减速规律进行速度规划。 (2) 柔性加减速技术 加减速控制算法可以避免机器人的冲击、振动,并在不增加系统运算量的情况下使得插补过程能够平滑快速的执行研究直线型加减速、S 型加减速、平滑 S 型加减速、力矩加减速提高系统的精度和速度。 (3) 最优轨迹规划算法 轨迹规划的任务是根据给定的路径点规划处通过这些点并满足边界约束条件的光滑的最优运动轨迹,研究时间最小的轨迹规划算法、能耗最小的轨迹规划算法、加速度最小的优化算法,使机器人的作业效率、能耗达到最优,同时确保运动的平稳性。 3.工业机器人编程语言规范: (1)编程语言规范 根据机器人不同应用领域的特点及具体要求,研究通用的机器人编程语言结构,定义词法及语法规则;充分考虑机器人控制系统的运动控制、运算-决策、通讯、工具指令以及传感器数据处理等基本功能,规划完善的指令集和内部函数集;定义机器人物理环境模型,确定编程语言指令与目标指令内在的逻辑关系。 (2) 编程环境设计 机器人编程环境具有以下特征:面向应用的数据结构、扩展的通用算法和数据结构。研究机器人语言程序的词法、语法和语义的分析,以及语法错误检查和系统逻辑错误检查技术;设计机器人语言程序解释器,实现机器人语言到系统内部指令的转化,并根据应用需求优化系统内部指令序列。 4.故障诊断、测试与可靠性技术: (1) 智能故障诊断系统 研究基于规则的专家系统,基于实例的专家系统,规则和实例混合的专家系统,基于规则控制的实例诊断系统。 (2) 可靠性技术 a.可靠性分析:对控制系统可靠性数据、故障模式、影响及危害度分析,以便发现设计、生产中的薄弱环节,为提高控制系统可靠性提供依据。 b.可靠性设计技术:采用简化设计、降额设计、冗余设计、EMC 设计、热设计、环境防护设计提高系统的可靠性。 c.可靠性试验技术:在研制阶段采用可靠性增长试验提高系统可靠性,通过可靠性鉴定试验确定系统定型,通过可靠性验收试验确定系统的可靠性是否达到要求,采用应力筛选试验提高产品的使用可靠性。通过加速寿命试验评估MTBF值是否达到。 d.软件可靠性试验技术:采用软件可靠性设计、可靠性增长测试、软件可靠性测试和软件可靠性验证测试提高软件可靠性、通过建立控制系统软件可靠性仿真测试平台提高软件可靠性测试水平。 5.面向重载机器人的先进控制算法: (1) 基于系统动力学模型的控制 针对重载机器人惯量变化大,固有频率低,高度非线性耦合的特点。研究基于机器人真实参数的动力学模型及实时求解。根据动力学模型,研究运动规划、柔性加减速以及模态控制等方面的技术,减少由于轨迹规划引起的机器人振动。 (2) 负载自动识别 针对机器人不同应用及负载变化,研究机器人在线自动识别负载的方法。 (3) 机器人空腔计算及处理 实现了机器人所能到达的所有位置范围计算,能提前提示用户示教的位置是否合法, 是否在机器人能到的位置。 (4) 立方干涉处理 实现了最多六个干涉区的设置,在多机器人相互配合运行工作时,通过干涉区避免了碰撞的危险性。二、对国家产业结构影响 我国汽车工业的工业机器人市场远未饱和。仅我国汽车工业就存在一个庞大的工业机器人市场,如果考虑到我国整个制造业的需要,工业机器人市场则更加庞大。 随着我国经济的快速发展和劳动力成本的不断提高,发展高科技产业,提高制造业生产自动化水平,由劳动密集型向技术密集型转变已经成为经济发展模式和制造产业结构调整的必由之路。随着计算机科学技术的不断发展,工业机器人应用领域也随之不断扩展和深化。工业机器人技术的发展,可以看做工业自动化的一场革命,南通作为科技重镇、制造重镇,把握机遇,迎接挑战,大力发展工业机器人制造业,应是一个战略性的决策。 应用范围: 伴随我国经济的高速增长,以汽车等行业需求为牵引,我国对工业机器人需求量急剧增加,国际工业机器人知名企业如ABB、FANUC 等纷纷在中国建厂,目前,我国工业机器人新装机量近90% 仍依赖进口。因此,对于工业机器人制造业,摆脱依赖关系,拒绝跟随式发展,成为目前国内基础制造业的重中之重。 工业机器人制造是一个崭新而又创新的产业,由于工业机器人应用极为广泛,其前景非常看好。本项目对工业机器人控制系统有其独到之处加之雄厚的制造业基础,两者相结合将为国内制造业开创一个新的主流产业。该产业的逐步形成既符合国家新兴高端制造业的产业发展规划,又为国家的经济腾飞打下坚实的基础。
北京交通大学 2021-04-13
工业机器人教学实验工作站
“工业机器人教学实验工作站”。是用于“机械工程与自动化”、“工业自动化”等相关专业实验教学的理想实验设备。主要由标准型工业机器人、工件位置变换机、综合型末端执行器及气压和电气控制系统等组成。机器人选用日本安川电机公司的产品,属六自由度垂直多关节类型,最大持重为6公斤;工作范围约在以机器人为中心的半径为1373mm的圆形区域和高度为2393mm的月牙型区域内;重复位置精度0.08mm。 工件安装在变位机上,由变位机带动其实现工件的位置变换,以使机器人能够处于最佳作业位置。这是一台多姿态单轴交流伺服电机驱动式变位机。当装上夹具板时,便是一台双支点卧式变位机,在夹具板上可安装较大的工件或构件;如果卸去夹具板,摆动变位机机头,使其分别在30°、45°、60°和90°定位,成为一台斜置式或立式变位机,较适合于安装小型零件和套筒型零件。在作业中,它可以被看作是一台单轴机器人,它与六自由度机器人的协同动作,就被看成是两个机器人的协调作业过程。 末端执行器是一个综合手爪,通过快速地更换零件,就能使机器人分别完成真空吸盘搬运、机械手爪搬运、模拟弧焊、模拟点焊、模拟打磨和书写绘画等作业内容。 本科生实验有:①真空吸盘方式的物料搬运示教(水杯)②机械方式的物料搬运示教(方形铝块)③薄板构件模拟点焊示教④三通管模拟弧焊示教⑤车架模拟打磨示教⑥任意书写绘画示教⑦机器人自由度及工作范围概论实验⑧末端执行器信号传输实验。 研究生进行的课题有:①机器人位姿运动分析②机器人运动惯性及动力学分析③工业机器人离线示教系统的研究④图象处理在机器人位置调整中的研究。 应用于高等教育、职业教育、成人教育等各层次机电专业、自动化专业或机械工程及自动化专业教学的实验设备。可以用于课程教学实验、认识实习、生产实习、机电系统实践课、毕业设计。学生自己示教真空吸盘搬运、机械手爪搬运、模拟弧焊、模拟点焊、模拟打磨及书写绘画等作业或进行各种机器人作业的演示实验。其设备造价相当于国外同类设备的1/3~1/2。
北京科技大学 2021-04-13
工业机器人智能制造生产线
工业机器人智能制造生产线 工业机器人智能制造生产线是以小型的柔性制造系统为载体,主要特点是占地空间小、操作安全、师生容易上手; 工业机器人智能制造生产线 可作为大专院校、中高职学生自动化专业、机电一体化专业、机器人专业、企业工程师进行机器人、数控加工、 材料出入仓库进一体化组建工业4.0智能无人工厂培训,提高阶段综合性学习与训练。 采用了模块化的设计,学生可以发挥自己的创新思维,对原有的生产流程进行创新改造。在掌握基础知识的前提下,进一步提高学生的积极性、动手能力和创新思维。 工业机器人智能制造生产线,是对工业现场大型设备进行提炼和浓缩的一款小型智能制造生产线实训设备,专门为职业院校、教育培训机构等而研制的,它适合机械制造及其自动化、机电一体化、电气工程及自动化、控制工程、测控技术、计算机控制、自动化控制等相关专业的教学和培训。融合了数控机床加工、光、电、气,包含了PLC、机器人、传感器、气动、工业控制网络、电机驱动与控制、计算机等诸多技术领域,对柔性制 造技术的工作过程进行研究,监控系统、主控PLC和下位PLC通过网络通讯技术构成一个完整的多级计算机控制系统,通过训练,使学生了解智能制造生产线的基本组成和基本原理,让学生全面掌握机电一体化技术的应用开发和集成技术,帮助学生从系统整体角度去认识。为信息学院自动化和电气工程自动化本科及其控制科学与工程研究生均提供了实验和科研的平台。 工业机器人智能制造生产线组成简介 1、立体仓库单元    立体仓库单元的主要功能是为系统提供加工工件原材料和储存成品件两大仓储功能,采用三层货架储存单元货物,用相应的物料搬运设备进行货物入库和出库作业的仓库。 2、环型流水线单元    环型流水线单元主要由铝合金型材基体、环行传输线、自动导向机构、变频调速系统、自动定位机构等组成。可完成对工件在不同速度下的输送,不同工位的自动定位,从而大大提高了自动环形传输线的工作效率。3、数控车床加工中心单元    数控车床加工中心单元采用小型化,占地小,用于整个工件的轴类部份的加工,采用自动门、自动装夹、四工位自动刀架、并有工件冷却加工系统,现实机加工件无人化DNC自动加工,配置伺服电机、工业级数控系统,精度高。 4、立式数控铣床加工单元    立式数控铣床加工单元采用小型化,占地小,用于整个工件三轴联动。可用于雕刻、数控钻、数控铣等加工工艺,采用自动门、自动装夹等,现实机加工件无人化DNC自动加工,工业级数控系统,精度高。 5、六自由度机器人单元    六自由度工业机器人、抓取机构、气爪等组成,主要完成对工件的提取及搬运到各数控加工单元、AGV小车搬运单元及工件视觉检测单元等。包含旋转(S轴),下臂(L轴)、上臂(U轴)、手腕旋转(R轴)、手腕摆动(B轴)和手腕回转(T轴),6个关节合成实现末端的6自由度动作。 6、四轴坐标机器人    四轴坐标机器人主要负责立体仓库的原材料入库与出库、成品零件的入库。够实现自动控制的、可重复编程的、多功能的、多自由度的、运动自由度间成空间直角关系、多用途的操作机。他能够搬运物体、操作工具,以完成各种作业,具有高速性的最大化吞吐量,超长的工作运行时间,节省地面空间。 7、视觉检测单元单元    检测单元的主要功能是对工件的精度、外观形状品质是否合格,通过摄像头获取工件的图像,由图像处理器完成工件合格与否的判断,将不合格工件剔除,将合格的工件传送至下一单元,而将不合格的工件推送至废料槽。 8、RFID系统单元    RFID系统单元是一种非接触式的自动识别系统,它通过射频无线信号自动识别目标对象,用于对工件材料的信息记录,加工路径记录、产品追溯化管理,由RFID标签和RFID读写器组成,标签安装在工件放置的工装板上-记录该工装板上放置零件信息,RFID读写器安装在工装板经过的每一个工位上,当工件到达该工位时系统可通过读写器,识别到该工件的运输及加工途径。每个传输工装板上都安装有RFID标签,在每个加工工位物料都需要进行识读操作,并将信息通过网络传输给服务器,实时的跟踪物料位置信息和仓储位置信息,做到物料、成品、半成品的可追溯性管理。 9、AGV小车搬运单元    AGV小车无人搬运车由机器人输送加工后的零件或从库房特定库架抓取零件,AGV智能小车并依据方位计划运动途径,运行至装卸站,准停,主动将零件放置到装卸站缓冲区,由四轴坐标机器人卸货至立体仓库成品区或原材料区。实现线边设备和自动仓储的自动上下料功能,采用激光通讯传感器通讯,信号传输快捷方便;行走模组采用PLC控制,AGV的PLC通讯,PLC发送任务码给机器人,实现点位控制;主控通讯,AGV整体与主控PLC通讯。 10、PLC工作站单元    采用工业自动化主流PLC,可随意扩展,配备触摸屏、具备物联网接口,铝合金型材构成,连接牢固。 11、总控台     总控平台主要由单相电网电压指示、电源控制部分、控制主机、状态指示灯、10.4英寸工业彩色触摸屏S7-315主机,电脑等组成,主要完成监视各分站的工作状态并协调各站运行,完成工业控制网络的集成。它带有电源总控制系统、视频监控系统,产线处的有数据均可从总控制台收集获取,可通过总控调度分配各个模块的工作职能。电源系统实施强弱电分开管理,待机休息及检修时要求强电关闭,控制、信号灯弱点部分完全独立运行。 12、零部件周转拖盘     用于原材料及成品件的输送周转用,配合RFID系统及智能仓库、环型流水线中应用。实现送料,取料,输送周转功能;实现智能化工作与管理,并对每个环节的时间点、责任人等关键数据进行实时采集,汇集到统一的信息平台,最大限度的提高存储货物的能力。
广东育菁装备有限公司 2022-03-22
轻量化6自由度工业机器人
项目成果/简介: 该项目通过铝合金压铸、铝/钢复合压铸、伺服电机高效相变热控等方法,实现机械臂、减速机与伺服电机等工业机器人成套的变革性轻量化技术突破;研发高性能控制系统,实现具有动力学特征的智能运动控制关键技术;项目采用制造工艺及控制系统自主开发,高度可控,将降低工业机器人的应用成本,提升我国工业机器人产业的整体技术水平及产业竞争力。 在前期研究中已获得工业机器人关键部件相关专利授权20余项,获得广东省科技计划多个项目支持及国家重点研发计划“智能机器人专项”立项:工业机器人整机性能提升与验证,并已建成广东省功能结构与器件智能制造工程实验室、广东省节能与新能源绿色制造工程技术研究中心等平台。 该项目具有低成本轻量化特征的核心部件及其规模制造技术;具有动力学特征的智能运动控制关键技术。在广东省两项重大战略专项支持下,已成功开发出精密RV减速机、相变热控伺服电机、仿生轻量化机械臂等产品。自主研发减速机核心零部件自主设计并组装的轻量化机器人整机知识产权类型:发明专利技术先进程度:达到国内领先水平成果获得方式:独立研究获得政府支持情况:无
华南理工大学 2021-04-10
轻量化6自由度工业机器人
该项目通过铝合金压铸、铝/钢复合压铸、伺服电机高效相变热控等方法,实现机械臂、减速机与伺服电机等工业机器人成套的变革性轻量化技术突破;研发高性能控制系统,实现具有动力学特征的智能运动控制关键技术;项目采用制造工艺及控制系统自主开发,高度可控,将降低工业机器人的应用成本,提升我国工业机器人产业的整体技术水平及产业竞争力。 在前期研究中已获得工业机器人关键部件相关专利授权20余项,获得广东省科技计划多个项目支持及国家重点研发计划“智能机器人专项”立项:工业机器人整机性能提升与验证,并已建成广东省功能结构与器件智能制造工程实验室、广东省节能与新能源绿色制造工程技术研究中心等平台。 该项目具有低成本轻量化特征的核心部件及其规模制造技术;具有动力学特征的智能运动控制关键技术。在广东省两项重大战略专项支持下,已成功开发出精密RV减速机、相变热控伺服电机、仿生轻量化机械臂等产品。 自主研发减速机核心零部件 自主设计并组装的轻量化机器人整机
华南理工大学 2021-05-11
基于工业机器人的智能生产线
一、项目简介  “中国制造2025”发展规划的启动促使智能制造成为生产制造企业的主旋律,而工业机器人作为智能制造的重要柔性制造单元,迎来了广阔的行业发展机遇。福建省出台的《福建省实施<中国制造2025>行动计划》,将发展智能制造视为首要任务,推广“数控一代”,开展智能制造试点示范,实施“机器换人”专项行动,发展壮大智能装备产业,开发智能终端产品和提升工业软件支撑能力。 二、前期研究基础 与泉州市微柏工业机器人研究院有限公司建立合作关系,采用企业与高校共同投资模式,建立“嘉庚学院—微柏工业机器人创新实验室”,实验室现有师生近百人,为高校师生提供研发环境,为企业进行技术难题攻关并培育人才。 与微柏签署了为期3年的技术服务合同(2014.12-2017.12,微柏工业机器人技术支持服务,150万元)。 与微柏联合申报了多项科技项目:(1)工业机器人整机综合性能测试仪的研发及产业化,2016.10,国家重大科学仪器设备开发专项;(2)工业机器人的远程监控和故障预测系统的开发,2015.9,福建省对外合作项目;(3)面向瓷砖智能化分拣生产线的关键技术,2015.10,泉州市科技局燎原计划。并协助微柏完成了福建省新型科研机构、企业创新基金、厦门大学本科生校外实习基地申请。 三、应用技术成果 基于课题组自主研发的机器人控制器,结合机器视觉自动识别技术,分别开展了以下6个项目:(1)为四川航天世东汽车部件有限公司研发的焊接机器人焊缝自动跟踪识别系统;(2)为苏州宝丽洁公司研发的之驻守机器人湿纸巾自动识别贴盖系统;(3)为泉州港威五金制品有限公司研发了铝水自动浇注系统;(4)为晋江的沃鞋服有限公司研发的鞋模自动跟踪喷胶系统;(5)为福建省锂东精密机械有限公司研制了自动搬运识别系统;(6)为江苏太仓宝祥有色金属制品厂研制了自动码垛识别系统。 四、合作企业 泉州市微柏工业机器人研究院有限公司是福建省工业机器人研发龙头企业,从事工业机器人相关技术研发及产业化十余年,专注研发六关节与四关节自由度串并联机械手等,自主研发数十种应用在冲压、喷涂、焊接、激光加工等生产作业领域的专业机器人。自主研发了高精度RV减速机检测台,工业机器人零点矫正与运动精度检测装置,焊接机器人防碰撞测试装置等工业机器人核心部件与整机检测系统,获得国家发明专利5项,国家实用新型专利30项。作为福建省科技小巨人企业、福建省科技型企业泉州市智能制造示范企业等,承担了省部级科技项目10余项。
厦门大学 2021-04-11
工业机器人关键技术研发及应用
依托我校“机器人视觉感知与控制技术国家工程实验室”等重点研究基地,重点开展面向工业4.0的智慧工厂技术、生产线自动化生产技术、智能工业机器人、高性能伺服电机驱动技术等制造业生产自动化升级改造关键技术和装备的研发。在机器人感知技术方面实现了传感器微型化、网络化、集成化和智能化,为机器人感知提供系统的解决方案;在机器人控制技术方面提高了机器人操作精度、可靠性、可重复性等性能指标,保障机器人能够完成多任务、高柔性的灵巧作业。目前已研发并应用的机器人包括铁轨表面缺陷检测机器人、汽车发动机气缸铸件清理机器人、高压电线巡检除冰机器人、与瑞森可机器人公司联合研制的关节臂式机器人等。
湖南大学 2021-04-11
新型钢材打捆包装工业机器人
定位精度高,拧丝头与钢材的严格位置关系是保证打捆成功的关键,也是打捆机高性能的具体体现。现有设备在垂直与水平两个方向定位,且系统不稳定很难达到正确位置,故定位精度不准确,定位时间长达20秒左右。而本产品用一个自由度来完成两个方向的定位,并能自动适应不同捆径的钢捆,大大减少。现有设备捆结角度为270°易造成松捆和散捆,而本产品为720°,就不会出现松捆和散捆等现象。 蓄丝机构的蓄丝量取决于导丝槽直径,从而决定每个打捆周期的送丝的长度,同时该机构还负责抽丝动作的完成,现有设备采用蓄丝轮于蓄丝油缸串联机构(即立式),安装在打捆机底部。本产品采用并联双油缸同步推进并置于打捆机上部,全部露在外部,这样机构紧凑,维护方便,造型美观。在导丝槽上设计了加强臂,并在其上安装了成型器,实现了减小抽紧力,提高了打捆质量,并节约了能源。 液压系统为节能控制回路,利用蓄能器的能量,使系统在限定的高、低压间工作,从而减少能量的损失,降低了系统的发热量,也降低了泵功率。控制方面使用了基于PLC的双CPU控制系统,并提出应用了直接检测到阀、传感器元部件级的设备监控、故障诊断体系,并为打捆机的进一步智能化提供了可靠依据。 主要性能指标:1. 本产品与国外现有技术相比较,整机布局的合理性,彻底解决了难于维护和检修的问题,提高了运行的可靠性;2. 打捆周期:小于10秒;3. 捆结角度: 720°;4. 蓄丝机构:并联双油缸同步推进并置于打捆机上部;5. 液压系统:节能控制回路;6. 控制系统:基于PLC的双CPU控制系统。
北京航空航天大学 2021-04-13
E03法宝进化者幼儿园幼教机器人
E03法宝老师机器人:针对幼儿园场景打造,2021年获工信部“优秀机器人讲师称号”,登上央视10套《科技时尚秀》3分钟专题报道,助力青少年无屏编程水平测试落地工作,已进驻全国200余座城市超2万家幼儿园,成为幼教领域标杆产品。内置针对幼儿园设计的几十套精品课程。大量解决幼儿园老师师资不够,备课难度大的问题。
青岛进化者小胖机器人科技有限公司 2026-01-08
工业机器人&工业互联网 实训系列产品
双元职教(北京)科技有限公司 2023-05-22
首页 上一页 1 2 3 4 5 6
  • ...
  • 151 152 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1