高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
MEMS惯性测量单元
惯性测量单元(Inertial Measurement Unit,简称IMU)是测量物体三轴姿态角(或角速度)以及加速度的装置。IMU属于捷联式惯导,该系统由两个加速度传感器与三个速度传感器(陀螺)组成,加速度计测量物体在载体坐标系统独立三轴的加速度信号,而陀螺检测载体相对于导航坐标系的角速度信号,测量物体在三维空间中的角速度和加速度,并以此解算出物体的姿态。在导航中有着很重要的应用价值。 技术指标 技术指标 单位 型号 UESTCME-1 UESTCME-2 UESTCME-3 轴数 个 3 3 3 加速度量程 ±10g ±35g ±35g 加速度精度 2.8 5.5 11 加速度灵敏度 mV/g 100±2 20±1 40±1 加速度零点稳定性 mg/hr 15 60 40 加速度温度漂移 % <2% <2% <2% 角速度量程 o/s ±150 ±300 ±300 角度精度 度 0.1 0.2 0.1 角度灵敏度 mV/o/s 6±1 6±1 25±1 角度零点漂移 o/hr 0.3 1.0 0.3 角度温度漂移 % <2% <5% <2%
电子科技大学 2021-04-10
MEMS惯性测量单元
惯性测量单元(Inertial Measurement Unit,简称IMU)是测量物体三轴姿态角(或角速度)以及加速度的装置。IMU属于捷联式惯导,该系统由两个加速度传感器与三个速度传感器(陀螺)组成,加速度计测量物体在载体坐标系统独立三轴的加速度信号,而陀螺检测载体相对于导航坐标系的角速度信号,测量物体在三维空间中的角速度和加速度,并以此解算出物体的姿态。在导航中有着很重要的应用价值。
电子科技大学 2021-04-10
MEMS惯性测量单元
成果简介: 惯性测量单元(Inertial Measurement Unit,简称IMU)是测量物体三轴姿态角(或角速度)以及加速度的装置。IMU属于捷联式惯导,该系统由两个加速度传感器与三个速度传感器(陀螺)组成,加速度计测量物体在载体坐标系统独立三轴的加速度信号,而陀螺检测载体相对于导航坐标系的角速度信号,测量物体在三维空间中的角速度和加速度,并以此解算出物体的姿态。在导航中有着很重要的应用价值。 技术指标 技术指标 单位 型号 UESTCME-1 UESTCME-2 UESTCME-3 轴数 个 3 3 3 加速度量程 ±10g ±35g ±35g 加速度精度 2.8 5.5 11 加速度灵敏度 mV/g 100±2 20±1 40±1 加速度零点稳定性 mg/hr 15 60 40 加速度温度漂移 % <2% <2% <2% 角速度量程 o/s ±150 ±300 ±300 角度精度 度 0.1 0.2 0.1 角度灵敏度 mV/o/s 6±1 6±1 25±1 角度零点漂移 o/hr 0.3 1.0 0.3 角度温度漂移 % <2% <5% <2%
电子科技大学 2017-10-23
GMU540 IMU惯性测量单元 飞机吊舱姿态调整 倾斜模块 惯导模块 姿态动态监测
技术亮点 ❖ 测量载体的三轴角速率、三轴加速度以及姿态角; ❖ 冲击:100g@11ms、三轴向(半正弦波); ❖ 振动:10~2000Hz,10g; ❖ 供电电压:DC5.0V±0.5V; ❖ 工作温度:-40~85℃。 产品介绍 GMU540惯性导航单元由三轴陀螺仪、三轴加速度计、温度传感器及高精度信号处理电路构成,可实时测量载体的三轴角速度、三轴线性加速度及姿态角(横滚、俯仰、航向),并通过RS422/RS485接口按标准通信协议输出经过全温域补偿(含温度漂移校正、安装偏差校准及非线性误差修正)的高精度惯性数据。 该产品采用差分陀螺架构,有效抑制线性加速度干扰与机械振动,并集成宽温域补偿算法,确保在工业级严苛环境下仍具备卓越的稳定性和可靠性 应用范围 本产品广泛应用于航空航天测控、精准农业自动化、智能交通、工业自动化、系统控制等领域,为各领域提供专业的导航与测控解决方案;核心应用场景如下: ❖ 飞机吊舱                ❖ 工业机器人精确控制               ❖ 医疗机械设备测控   性能参数 GMU540 条件 参数 测量范围 - 横滚±180°,俯仰±90°,方位±180°   测量轴   - X 轴 / Y轴 / Z轴 横滚俯仰分辨率1) - 0.01° 横滚俯仰静态精度2) @25℃ ±0.05° 横滚俯仰动态精度(rms) @25℃ ±0.1° 陀螺仪 陀螺仪量程 - ±300°/s 零偏不稳定性(allan) - 4.5°/h 角度随机游走系数(allan) - 0.25°/sqrt(h) 加速度 加速度量程 - ±4g / ±16g 可设 零偏稳定性(10s均值) - 0.02mg 零偏不稳定性(allan) - 0.005mg 速度随机游走系数(allan) - 0.005m/s/sqrt(h) 零点温度系数3) -40~85℃ ±0.002°/K 灵敏度温度系数4) -40~85℃ ≤100ppm/℃ 上电启动时间 ≤2.0S 响应时间 0.01S 输出信号 RS485/RS422 可选 工作电压及电流 5VDC(50mA) 电磁兼容性 依照EN61000和GBT17626 平均无故障工作时间 ≥99000小时/次 绝缘电阻 ≥100兆欧 抗冲击 100g@11ms、三轴向(半正弦波) 抗振动 10grms、10~1000Hz 电缆线 10cm端子线g 重量 ≤10g(含标配端子线) 注意:横滚,航向为±180°, 俯仰为±90°。
深圳瑞惯科技有限公司 2025-10-28
21004惯性演示器
宁波华茂文教股份有限公司 2021-08-23
惯性导航教学实验平台
1 系统用途 MIS-3DM-GD20惯性导航教学实验系统(惯导/航姿/运动传感),该系统标配双轴电动转台、转台控制器和一个MEMS器件的AHRS航姿参考系统,该传感器由九轴惯性测量组合,包含三轴陀螺仪、三轴加速度计、三轴磁强计传感器,能满足导航、制导与控制专业的学生了解惯性导航及飞行控制原理,有助于学生理解、熟悉、掌握惯性导航/航向姿态/运动状态采集的原理、技术及其应用,也可以满足其它专业如飞行技术、航海技术、无人机技术、测绘技术等不同专业的惯性导航技术的科研和教学的使用。还可设计开发各类飞行器、车辆、船舶、机器人、工程机械、穿戴式等各类运动载体测量及控制的创新实验。虽然我们完善了该系统的实验教学功能,同时,该系统也是一个二次开发平台,可以作为其他项目的数据采集验证平台。 2 功能特点 (1) 较低的价格,可以让众多学生同时动手实验,引领国内惯导/航姿/运动传感教学和实验进入普及化时代; (2) 国内首家配备低成本电动转台,可做定量实验,更好的掌握惯导/航姿/运动传感技术; (3) 提供全面的相关教学和实验配套服务,减轻教师的负担; (4) 集成度高,包含了各类运动相关传感器; (5) 实验覆盖全面,从单一运动传感器实验到所有运动传感器融合的综合实验; (6) 通过自身在国内惯导/航姿/运动传感领域的领先技术,实现惯导/航姿/运动传感实验室方案的不断升级,真正使高校教学/实验/科研水平跟上技术发展的潮流; (7) 可为学校量身定做相关实验系统; (8) 系统集成了多种模型,能够完成各个学科,包括航天,航空,航海,陆地等载体的惯性导航实验项目; 3 实验设备 图1-1 实验设备示意图 3.1 双轴电动转台(TT-3DM-2E-10)   机械台体采用UO形铝合金框架结构,由内环横滚轴框架和外环俯仰轴框架组成相互垂直的转动架构,采用直流电机驱动旋转,实现三维空间任意位置和角度的姿态测量。具有位置、速率和摇摆三种测试功能。技术指标如下:     负载尺寸重量 50mm×50mm×50mm / 0.5 kg 负载及夹具安装空间 120 mm×120mm×120mm 主轴与俯仰轴转角范围 连续无限 角位置综合测量精度 ±0.08º 控制到位分辨率 ±0.01º 速率范围 0.1º/s~300 º/s 速率精度与平稳度 1% 测角数据采集频率 20Hz 用户导电滑环 12 环/每环2A 台体重量 15Kg~20 Kg 台体尺寸 520mmL×400mmW×485mmH 串口波特率 115200 bps 工作电源 220VAC/200 3.2 双轴采集控制器(CC-3DM-2E-10) 采集控制器通过USB或串行接口连接计算机实现航姿模块信号的采集与电动转台的测量控制。     测角数据采集频率 20Hz 外形尺寸 300mmW×150mmW×170mmH 串口波特率 115200 bps 工作电源 220VAC/200W   3.3 惯导/航姿参考系统(3DM-E10A) 3DM-E10A是一款微型的全姿态测量传感装置,它由三轴MEMS陀螺、三轴MEMS加速度计、三轴磁阻型磁强计等三种类型的传感器构成。三轴陀螺用于测量载体三个方向的的绝对角速率,三轴加速度计用于测量载体三个方向的加速度,在系统工作中,主要作用是感知系统的水平方向的倾斜,并用于修正陀螺在俯仰和滚动方向的漂移,三轴磁阻型磁强计测量三维地磁强度,用于提供方向角的初始对准以及修正航向角漂移。可提供的输出数据有:原始数据、四元数、姿态数据等。技术指标如下:   尺寸:28mm×34mm×19mm; 重量:18g 内部更新率:80Hz; 启动时间:< 1 sec; 静态角度误差(俯仰、滚动):± 0.1 degree 动态角度误差(俯仰、滚动):± 1.0 degree; 静态角度误差(航向): ± 0.5 degree; 动态角度误差(航向): ± 2degree; 航向角分辨率: <0.1degree; 加速度计测量范围:±2g; 速率陀螺测量范围:±300°/sec;  
上海紫航电子科技有限公司 2022-06-20
GIM302惯性测量单元 三轴陀螺仪 三轴加速度计 温度检测 三维角速度 三维线加速度 空间姿态信息测量 IMU
  GIM302惯性测量装置由三轴陀螺仪、三轴加速度计、温度检测模块及数据处理电路构成,可实时监测运动体的三维角速度、三维线加速度及空间姿态信息,并通过RS422/RS485数字接口依照既定通信规约输出经过多维度误差修正(涵盖温漂补偿、装配偏差校正、非线性特性校准等)的完整惯性参数。该设备采用差动式陀螺设计架构,显著降低了直线加速度与机械振动带来的干扰,同时具备宽温域补偿功能,确保在严苛工业环境下稳定工作。 应用范围: 该系列产品典型应用场景包括:便携式三维激光扫描系统、工业机器人高精度运动控制、微创手术导航设备、地下工程定向钻进系统、智能驾驶测试平台、水下机器人定位导航、无人机飞控与制导系统等。
深圳瑞惯科技有限公司 2025-10-22
惯性导航系统运动对准技术
本技术涉及一种惯性导航系统的运动对准方法,即如何在运动情况下借助GNSS信息提供惯性导航系统的初始姿态。在舰载机、制导弹药、水下无人潜航器和地面机动车辆等应用中,要求INS能够在运动过程中进行对准。目前运动对准的主流方法借鉴了静态或准静态情况下的实现思路,即通常包括粗对准和精对准两个阶段。粗对准用于得到粗略的初始姿态,为精对准提供初始值。精对准通常采用基于泰勒级数展开的非线性滤波方法,如一阶线性近似的扩展卡尔曼滤波EKF等。采用EKF等非线性滤波方法进行精对准,需要知道较准确的惯性器件,例如陀螺和加速度计,以及外部速度/位置信息的噪声特性,而且要求粗对准提供的初始姿态误差不能过大,否则滤波器将不能在规定的时间内收敛到理想的精对准结果,有时甚至发散。  在本技术考虑的应用场合中,INS安装在运动载体上,INS的速度和位置信息由GPS或其他外部信息源给出。  本技术的特色和优势:在没有任何姿态先验初值的情况下可实现惯性导航系统的快速姿态对准,无需知道惯性器件及外部速度/位置信息的噪声特性,无需任何姿态初值,具有绝对的计算稳定性,不存在发散的情况,只要速度/位置辅助信息有效,能够在任意运动情况下实现姿态对准,大幅缩短载体导航前的准备时间。
上海交通大学 2021-04-13
新型谐振MEMS微惯性传感器
研发生产的半球谐振微陀螺、圆盘多环微陀螺等10多款高性能、小尺寸、高可靠性MEMS微惯性传感器,达到惯性级,在微小卫星、微航天器等场合极具应用潜力。与传统的微陀螺相比,该陀螺无运动部件,抗冲击性更好;同时该陀螺可以采用角速度检测和角速度积分检测两种工作模式,极大的提升了其应用场合与范围。
上海交通大学 2021-04-10
新型谐振MEMS微惯性传感器
针对我国在军事、工业等领域对高性能、小尺寸、高可靠性MEMS微惯性传感器日益迫切的需求,上海交通大学自2001年起就开展基于MEMS技术的微惯性传感器的研究,已成功研制十余款传感器样机,在研的半球谐振微陀螺、圆盘多环微陀螺等预期体积小于1cm3,成本低于50美元,功耗低于100mW,有望达到惯性级,在微小卫星、微航天器等场合极具应用潜力。与传统的微陀螺相比,该陀螺无运动部件,抗冲击性更好;同时该陀螺可以采用角速度检测和角速度积分检测两种工作模式,极大的提升了其应用场合与范围,特别适合在高G环境下进行空间位置测量、导航与姿态控制等。此外,其在消费电子市场以及汽车市场也拥有这巨大的应用空间,如手机、游戏机等手持电子设备的姿态控制系统,照相机、摄像机的稳定电子平台,汽车的防翻车预警系统等。。相关研究内容作为重要组成部分曾获省部级及以上奖励多次,授权发明专利几十余项,微陀螺方面的专利国内第一,国际第二,发表SCI/EI等论文几十篇。
上海交通大学 2021-04-13
1 2 3 4 5 6
  • ...
  • 59 60 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1