高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
脑连续额状切面模型XM-608
XM-608脑连续额状切面模型   XM-608脑连续额状切面模型共7片,每片厚度约1.2cm,模型通过脑干正中(红核及内夹)作额状切面,示其断面结构;通过乳头体作一额状切面,示其切面结构;通过前连合作一额状切面,示其断面结构;通过胼胝体膝部作一额状切面,示其切面结构;通过胼胝体压部作一额状切面,示其切面结构;小脑通过齿状核作一切面,示其切面结构,同时,还可以显示脑的外形,脑的沟回等结构。 尺寸:自然大,17×14×17cm 材质:玻璃钢
上海欣曼科教设备有限公司 2021-08-23
一种基于时空上下文的人流量统计方法
对灰度序列 G 中的每一帧图像,借助 sobel 算子及帧间差分法提取膨胀后的运动边缘,在膨胀后的运动边缘处进行基于 HOG特征的人头目标检测,从而得到初步检测目标队列 head_list,根据空间约束将虚假目标从队列 head_list 中删除,将 head_list 中的目标与之前所有帧中检测出来的最终目标进行灰度互相关关联匹配,对统计队列 people_list 中的目标进行跟踪,对统计队列 people_list 中的目标
华中科技大学 2021-04-14
一种基于面部区域时空关联性的抑郁程度评估方法
本发明提供一种基于面部区域时空关联性的抑郁程度评估方法,属于计算机视觉与医疗诊断技术领域,解决了现有抑郁症识别方法准确率不高的问题。本发明提出一种融合时空注意力机制的深度学习模型。其核心包括:将面部图像划分为多个子区域,独立计算各子区域的重要性;通过时空注意力机制动态融合空间重要性、空间上下文、时间上下文及空间相似性,生成面部注意力图谱;基于此构建的识别模型利用时序特征融合模块提取动态表情变化特征,实现抑郁程度的精准评估。实验表明,该方法在AVEC2013和AVEC2014数据集上分别取得MAE5.79和MAE 5.76的识别性能,优于现有技术。本发明通过细粒度捕捉面部肌肉的时空关联模式,为自动抑郁症识别提供了高效、客观的解决方案。
兰州大学 2021-01-12
基于时空注意力自编码的碳钢涡流热成像腐蚀检测方法
本发明公开了基于时空注意力自编码的碳钢涡流热成像腐蚀检测方法,涉及涡流热成像检测技术领域,该方法包括:利用脉冲涡流热成像检测早期腐蚀样品,获取红外图像序列,捕捉早期腐蚀样品表面温度随时间的变化趋势;构建时空注意力自动编码器,利用无腐蚀样本的红外图像序列对时空注意力自动编码器进行训练;将待检测红外图像作为新的输入信号,利用时空注意力自动编码器捕获温度数据的时空动态变化,生成重建信号;通过计算输入信号与重建信号的最大重建误差,构建误差图,识别与可视化待检测红外图像中的腐蚀区域。本发明适用于早期腐蚀信号较微弱、边界模糊的情况,为早期腐蚀区域的精准识别和后续腐蚀程度评估提供了更可靠的技术支撑。
南京工业大学 2021-01-12
带钢连续热处理热过程模型与工艺优化
带钢连续热处理(包括立式炉、卧式炉)过程是冷轧和热轧带钢生产的重要工序,该过程是在带钢成分确定的情况下,依靠控制热量传递过程来控制带钢内部微观结构的演化,最终完成金相组织的转变,达到控制带钢力学、电磁等性能的目的。因此,温度控制是带钢热处理过程控制的核心,也是热处理质量的根本保证。为了解决带钢连续热处理炉优化控制的技术难题,并克服半理论或纯经验控制模型严重依赖于现场、难以移植和泛化能力有限的不足,本成果基于传热机理模型对带钢在连续热处理炉内的传热过程及其优化控制策略展开相关的理论分析和实验研究。 本成果瞄准带钢连续热处理热过程模型研究,基于传热学的基本原理,精确解析退火炉内辐射换热、对流换热(喷气快速冷却、喷气快速加热)、接触换热(炉辊与带钢之间)、喷雾冷却等传热过程,开发带钢在热处理过程中的温度分布预测软件,准确预测带钢温度分布(包括稳定工况和工艺过渡工况),带钢温度预测的典型精度在±2.5%以内(90%以上的命中率),为提高带钢连续热处理的产品质量奠定了基础。在带钢温度精准预测的基础上,基于可行工况集和最优化方法,建立了炉况参数优化策略,大大降低带钢连续热处理工艺切换的效率。
北京科技大学 2021-02-01
金属玻璃涂覆金属丝连续制备技术
金属玻璃(又称非晶合金)是指在固态下原子排列具有短程有序而长程无序,并在一定温度范围内保持这种状态相对稳定的金属合金。近十几年来,块体金属玻璃的发展更是其发展过程的一个里程碑,使得金属玻璃作为结构材料成为可能。 与传统晶体材料相比,块体金属玻璃具有较高的强度(~2GPa)、大的弹性极限(2%~3%)及良好的耐腐蚀性等突出优点。正是由于其独特性能,使得块体金属玻璃在体育用品、电子、医学及国防等领域得到了越来越广泛的应用。 然而金属玻璃在室温承载失效时几乎没有塑性应变产生,表现为典型的脆性断裂方式,因而严重限制了其作为工程材料的应用。围绕块体金属玻璃室温塑性的改善,国内外开展了广泛的研究。近年来的研究发现,在块体金属玻璃组织中引入第二相可以改变剪切带的分布从而增加其室温塑性,获得综合力学性能较好的新材料。这种第二相可以是外加的,也可以是内生的。其中,钨丝增强锆基金属玻璃复合材料因其独特的性能而备受关注。Zr基块体金属玻璃在拉应力或压应力作用下,会发生有剪切力引起的剪切断裂,断裂面在最大切应力的作用面内,有很好的自锐性,用钨丝增强后,提高了强度和密度,达到了高密度、自锐性的特殊要求,可以用作穿甲材料。通过合理的界面和体积分数控制,目前已经制备的这类复合材料中最大压缩断裂强度高达2600MPa,塑性达到13.5%。目前制备钨丝增强块体金属玻璃复合材料的主要方法是渗流铸造法,然而受金属玻璃合金玻璃形成能力的影响,该方法只能制备一些较小尺寸和简单形状(棒状和板状)的试样,极大的限制了这类材料的应用范围。 本项目是一种短流程、适合于大规模工业生产、并能获得完全清洁复合界面的金属玻璃包覆金属丝复合材料的连续制备设备与工艺。 已申请专利:陈晓华, “一种金属玻璃包覆金属丝复合材料的连续制备设备与工艺”,中国发明专利授权号:ZL200710120355.4.授权公告日:2009年10月28日
北京科技大学 2021-04-11
带钢连续热处理热过程模型与工艺优化
带钢连续热处理(包括立式炉、卧式炉)过程是冷轧和热轧带钢生产的重要工序,该过程是在带钢成分确定的情况下,依靠控制热量传递过程来控制带钢内部微观结构的演化,最终完成金相组织的转变,达到控制带钢力学、电磁等性能的目的。因此,温度控制是带钢热处理过程控制的核心,也是热处理质量的根本保证。为了解决带钢连续热处理炉优化控制的技术难题,并克服半理论或纯经验控制模型严重依赖于现场、难以移植和泛化能力有限的不足,本成果基于传热机理模型对带钢在连续热处理炉内的传热过程及其优化控制策略展开相关的理论分析和实验研究。本成果瞄准带钢连续热处理热过程模型研究,基于传热学的基本原理,精确解析退火炉内辐射换热、对流换热(喷气快速冷却、喷气快速加热)、接触换热(炉辊与带钢之间)、喷雾冷却等传热过程,开发带钢在热处理过程中的温度分布预测软件,准确预测带钢温度分布(包括稳定工况和工艺过渡工况),带钢温度预测的典型精度在±2.5%以内(90%以上的命中率),为提高带钢连续热处理的产品质量奠定了基础。在带钢温度精准预测的基础上,基于可行工况集和最优化方法,建立了炉况参数优化策略,大大降低带钢连续热处理工艺切换的效率。
北京科技大学 2021-04-13
一种光纤连续液位传感器
本发明提供了一种光纤连续液位传感器,包括:楔形光纤束和信号处理电路;所述楔形光纤束包括至少一个测量段,所述测量段包括至少一束发射光纤束和至少一束接收光纤束;所述楔形光纤束的楔形面为传感面;所述信号处理电路包括至少一个发光器、至少一个接收器、光电转换电路、差分放大电路;所述发光器与所述发射光纤束一一对应,所述接收器与所述接收光纤束一一对应;所述接收器连接所述光电转换电路。与现有技术相比,利用光在空气和液体中的散射
华中科技大学 2021-04-14
一种多层结构柔性电子连续复合系统
本发明属于多层结构柔性电子复合加工相关领域,并公开了一 种多层结构柔性电子连续复合系统,其包括 4 个收放卷模块、一次层 合模切模块、转步距模块、二次层合模切模块、剔废模块以及标签收 卷模块等多个功能模块,并对这些模块的内部组成及其相互连接方式 进行了设计。本发明还对该系统的层合模切控制、张力控制等工艺原 理给出了优化研究结果。通过本发明,不仅可根据需求工况实现多种 工况模式之间的自由调换,同时能有效满足单条复合、良率检测、剔 废、纠偏、高精度模切和连续进给、确保良好张力控制等功
华中科技大学 2021-04-14
起爆药连续化自动化生产技术
成果简介:本项目发明的“起爆药连续化自动化生产技术及生产线”,从根本上解决了长期困扰民用爆破器材行业起爆药生产领域发展的重大技术难题,突破了起爆药全自动化生产技术、工艺过程平面和立面布置技术、关键工艺装置和设备设计制造、全程自动控制技术等多项关键技术。在尊重行业传统生产工艺的基础上,与自动化和信息化技术进行了深度融合,实现了重要的技术创新,最关键的是实现了起爆药连续化自动化生产过程全程的平面和立面创新性布置,解决了起爆药自动化生产过程的完全人机隔离、无人操作、自动传输难题,实现了起爆药生产过程的全自
北京理工大学 2021-04-14
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 19 20 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1