高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
揭示植物基因表达在染色质水平调控的新机制
利用模式植物拟南芥为研究对象,通过对染色质结合的RNA的纯化及测序分析(CB-RNA-seq),研究团队的工作显示共转录剪接在目前已检测的物种中是普遍模式。同时,植物的共转录剪接存在几个重要的特征:首先, 共转录剪接的效率与特定内含子到基因3’端的距离正相关,与一些激活型的组蛋白修饰(H3K4me3/H3K9ac)负相关,暗示快速的转录起始及延伸不
南方科技大学 2021-04-14
提高母猪繁殖性能的机制研究及全繁殖周期营养调控技术
可以量产/n该项目应用于现代农业的母猪养殖及饲料领域。1.建立评价影响母猪繁殖性能因素的大数据分析技术,利用该技术评价了营养调控技术的 效果。2.建立了利用日粮纤维调控母猪全繁殖周期采食量的营养调控技 术。阐明了可溶性纤维通过高水合特性和快速发酵特性,增加母猪饱感, 控制妊娠期母猪采食量的机制;以及通过快速发酵产酸和对肠道微生物 菌群的调控,降低了机体的氧化应激状态,增加了胰岛素敏感性,从而 提高泌乳期采食量的机制。3.利用协同增效原理,研发了新型母猪日粮 专用纤维原料。该原料能替代魔
华中农业大学 2021-01-12
一种便于收纳的供暖装置
电能供暖具有便捷性、安全性和低碳性等特点,电能供暖设备具有广阔的市场空间。本发明可在不工作时将进行折叠收起,以显著节省供暖装置的占用空间;本发明能够实现模块化组装,设备检修和更换非常方便;本发明携带方便,可用于室内外多种场合。
沈阳农业大学 2025-05-21
发现细菌血清抗性机制与调控方法
发现血清抗性菌最重要的代谢特征为甘氨酸-丝氨酸-苏氨酸代谢通路显著下调,采用外源甘氨酸、丝氨酸或苏氨酸重编细菌代谢组,可以大大提高对血清补体的敏感性,同时也可以提高对抗生素的敏感性。其主要机制为外源甘氨酸、丝氨酸和苏氨酸促进三羧酸循环中α-酮戊二酸的积累,以抑制ATP合酶;同时高浓度甘氨酸抑制嘌呤通路合成ATP; 使ATP合成的两条主要途径同时受到抑制,导致ATP生成下降;进而下调cAMP/CRP复合物,上调细菌外膜补体结合蛋白HtrE, NfrA和YhcD表达。高浓度的甘氨酸还可以增加质子动力势,促进血清补体与补体结合蛋白的结合,逆转血清抗性,实现血清补体高效杀菌(如上图所示)。甘氨酸促进补体杀菌在人血清、小鼠血清、猪血清、鱼血浆和对虾血浆均获得相似结果,在BALB/c小鼠和Rag1-/-(无T- 和B- 细胞免疫)细胞缺陷小鼠体内也得到证实,为控制人类和动物养殖病原菌感染提供了新的思路。       该研究不仅在解决百年难题上取得突破性进展,且在机制上有两个新发现:一是发现一条新的能量代谢调节通路,二是发现代谢物可以优于基因调控来主导物质代谢流向。
中山大学 2021-04-13
揭示膀胱癌淋巴转移关键分子机制
阐明LNMAT1通过诱导CCL2募集TAMs促进膀胱癌淋巴转移的关键分子机制,对于在膀胱癌淋巴转移中潜在治疗靶点的临床干预具有重要意义。 鉴定了调控膀胱癌肿瘤微环境相关的长链非编码RNA LNMAT1。LNMAT1能够促进肿瘤细胞分泌趋化因子CCL2,进而募集TAMs到膀胱癌肿瘤微环境中。被“引诱”而来的TAMs能够分泌参与膀胱癌淋巴管生成过程的VEGF-C,帮助肿瘤细胞发生淋巴转移。由此可见,如果能介导到肿瘤微环境这片“土壤”,干预膀胱癌“帮凶”LNMAT1的表达,将能改变“种子”的生存情况,对抑制膀胱癌的进展、改善患者的生存预后发挥重要价值。林天歆教授团队首次阐明LNMAT1介导肿瘤微环境的重要作用及通过与趋化因子CCL2协同调控TAMs的分子机理,对认识膀胱癌淋巴转移的发生发展的机制有重要意义。
中山大学 2021-04-13
耐药性超级细菌治疗新机制
发现一种已于临床应用多年专门对付幽门螺旋菌治疗胃溃疡、含有金属铋的抗菌药物 (枸橼酸铋钾Colloidal Bismuth Subcitrate CBS),能有效“驯化”抑制一些死亡率极高、具多重耐药性超级细菌的活跃性,并能延缓细菌耐药性的产生,让现有抗生素的使用周期大为延长,可对付包括会引发出血性腹泻、败血症、脑膜炎和多发性脓肿等严重感染的耐碳青酶烯类肠杆菌(CRE)和耐碳青酶烯类肺炎克雷伯杆菌(CRKP)等。 耐碳青酶烯类肠杆菌(CRE)被世界卫生组织评为当今全球最高危的三类超级细菌之一,是一类对几乎全部的抗生素都具有耐药性的超级细菌,经人对人的传染性非常高。据美国CDC的数据,受到CRE感染并发展为血液感染的病人致死率可高达50%。NDM-1(New Delhi Metallo-β-lactamase 1)是一种导致CRE超级细菌形成的重要耐药因子,携带NDM-1的超级细菌感染控制难度大,死亡率高,对公众健康造成极大的威胁,有机会引发抗生素时代的终结从而使人类进入后抗生素时代。科学家已在除南极洲外逾70个国家和地区发现携带NDM-1的致病菌。 该研究团队发现含铋化合物可成为一类对付NDM-1的强力抑制剂。团队通过对港大余雷觉云感染及传染病中心总监何栢良医生在香港采集的NDM-1耐药大肠杆菌(简称NDM-HK)的一系列研究发现,在现有的抗生素疗法中加入含铋的抗菌药,携带NDM-1的超级细菌会逐渐被“驯化”,以常用的碳青霉烯类抗生素便能将这类细菌轻易杀死。 尤为重要的是,利用这种全新的联合疗法能把现有抗生素的用量减少近九成,并在较长时间内遏止NDM-1耐药性的进一步增强,从而使现有抗生素的使用寿命得以大为延长。研究团队在小鼠感染细菌模型中,使用含CBS的联合疗法能显著延长被NDM-1细菌系统性感染小鼠的存活时间,将小鼠的最终成活率提升25个百分点以上。目前研究团队将继续优化 CBS 的应用范围, 正实验超级细菌尿道感染等动物模型,以期更广泛对抗一系列的恶菌感染。
南方科技大学 2021-04-13
发现植物光信号转导新机制
光不仅是植物进行光合作用的能量来源,也是调控植物生长发育的一种重要环境信号分子。植物幼苗的光形态建成是光信号调控植物生长发育的重要过程,该过程受不同光受体、E3泛素化连接酶复合体和转录因子等组成的分子网络体系调控。在植物光信号转导途径中,锌指蛋白BBX(B-box)家族成员发挥了重要作用,多个BBX蛋白参与COP1-HY5介导的信号通路,共同调控植物光形态建成。 光信号可启动植物体内将
南方科技大学 2021-04-14
气溶胶与降水减少相关物理机制
发现由人为活动产生的气溶胶可显著抑制华南四月中尺度对流系统的发生频次,进而显著减少降水,并阐释了其物理机制。此发现解释了近40年来华南四月降水减少的原因。 研究团队首先分
南方科技大学 2021-04-14
瑞德西韦抑制新冠病毒机制
北京协和医院张抒扬团队联合中国科学院上海药物研究所徐华强、许叶春课题组以及浙江大学基础医学院张岩课题组经过46天的日夜奋战,首次解析新冠肺炎病毒重要药靶RNA复制酶和抑制剂瑞德西韦(Remdesivir)的高分辨冷冻电镜结构,阐述RNA复制酶结合RNA的模式,以及瑞德西韦抑制RNA延伸的机制,为基于病毒基因的复制酶的抗新冠病毒药物以及广谱抗病毒药物研发提供了理论机制和结构基础。相关论文在线发表在《科学》上。危重型新冠病毒感染常常造成患者多器官功能障碍,包括急性呼吸窘迫综合征、急性心肌损伤、急性肾损伤、弥散性血管内凝血等,治疗难度极大。尽管多学科联合治疗取得了一定成效,但极危重症新冠肺炎患者病死率仍然很高。面对尚无特效药物治疗的困境,迫切需要了解抗病毒药物如瑞德西韦对新冠肺炎感染患者的疗效以及潜在的作用机制。鉴于此,该团队通过研究发现,新冠肺炎病毒主要通过黏膜系统侵染人体细胞,感染后病毒的大量复制需要其遗传物质RNA的迅速合成。而该过程的核心元件RNA复制酶,这是冠状病毒复制的核心组成部分。目前正在进行临床试验的多个核苷类药物,包括瑞德西韦,就是靶向RNA复制酶。面对瑞德西韦的疗效,国内外临床试验报道结果尚不一致。张抒扬团队设计出了新冠病毒聚合酶潜在的RNA结合序列,并首次利用体外生化实验,建立了新冠病毒复制酶活性的测定方法,通过药物抑制试验揭示了瑞德西韦三磷酸形式是最终发挥活性的小分子形式,瑞德西韦三磷酸分子在体外生化数据中对Rdrp存在抑制作用,为临床实验提供了理论依据。为了更进一步阐述瑞德西韦等核苷类药物抗病毒的精细机制,该研究团队还成功解析新冠肺炎病毒RNA复制酶2.8 ?分辨率的单独结构以及结合RNA和抑制剂瑞德西韦分辨率为2.5埃复合物的冷冻电镜结构。此外,该研究还阐述了瑞德西韦如何进入病毒复制活性中心并共价插入病毒基因组,从而抑制病毒复制,从结构上解释了瑞德西韦的抗病毒机制,为当前其他在研的潜在抗病毒药物研发提供结构依据。不过,研究者也表示,在瑞德西韦的临床疗效评价方面,仍然需要继续开展设计严谨的临床试验才能给出最终答案。相关论文信息:https://doi.org/10.1126/science.abc1560
浙江大学 2021-04-11
揭示植物光形态建成调控新机制
通过遗传分析方法发现,在光照条件下,bbx30和bbx31突变体下胚轴长度与野生型相比明显变短,而BBX30和BBX31的过表达材料下胚轴长度与野生型相比显著伸长,这一现象表明了BBX30和BBX31是植物光形态建成的负调控因子。该项研究证明BBX30和BBX31是一个位于HY5信号通路下游的关键因子,参与调控植物光形态建成。
南方科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1