高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种用于可调桨叶片的激光测量装置、系统及方法
本发明公开了一种可调桨叶片激光测量装置,包括底座、旋转 台、激光位移传感器、横向移动机构和纵向移动机构;底座,用于支 撑测量装置其它部件;旋转台,安装于底座上,用于放置和旋转待测 可调桨叶片;横向移动机构,用于在水平方向上调节激光位移传感器相对可调桨叶片上测点的位置;纵向移动机构,用于在竖直方向上调 节激光位移传感器相对可调桨叶片上测点的位置;激光位移传感器, 用于采集可调桨叶片上测点与激光位移传感器之间的距离。本发明提 供了一种可调桨叶片激光测量系统及方法。本发明采用激光三角测量 原理获取测点的空
华中科技大学 2021-01-12
航空发动机高温合金叶片的快速精铸技术
高温合金叶片研制是航空发动机、大型舰艇发动机、重型燃气轮机等“国之重器”创新发展的核心技术之一,因技术难度大、发展起步晚、国外封锁严等,成为制约国家安全能力提升的技术瓶颈。以满足国家重大需求为己任,西安交通大学机械制造系统工程国家重点实验室融合新型的3D打印技术和成熟的精密铸造技术,发明了航空发动机高温合金叶片的快速精铸技术。该技术可显著提升复杂叶片的制造能力、大幅缩短叶片制造的工艺路线、大幅降低制造对叶片设计的限制,对我国航空发动机制造体系和研制体系能力的提升具有重大的革新意义。目前,在国家项目和各级部门大力支持下,研究团队已攻克了该技术的关键难题,形成了完备的技术体系,建成了小批量生产线,具备了服务于我国先进航空发动机创新设计的能力。 航空发动机高温合金叶片的快速精铸技术的技术。以CAD数字数据直接驱动,利用光固化3D技术成形制造树脂原型,采用凝胶注模方法将陶瓷浆料一次贯注成型,冷冻干燥处理后,烧失树脂原型和烧结陶瓷,经过强化处理后,制备出芯壳一体化陶瓷铸型,在此铸型中浇铸金属,经凝固、脱芯等工序,即可得到高温合金叶片。
西安交通大学 2021-04-11
一种用于可调桨叶片的激光测量装置、系统及方法
本发明公开了一种可调桨叶片激光测量装置,包括底座、旋转台、激光位移传感器、横向移动机构和纵向移动机构;底座,用于支撑测量装置其它部件;旋转台,安装于底座上,用于放置和旋转待测可调桨叶片;横向移动机构,用于在水平方向上调节激光位移传感器相对可调桨叶片上测点的位置;纵向移动机构,用于在竖直方向上调节激光位移传感器相对可调桨叶片上测点的位置;激光位移传感器,用于采集可调桨叶片上测点与激光位移传感器之间的距离。本发明提供了一种可调桨叶片激光测量系统及方法。本发明采用激光三角测量原理获取测点的空间坐标,实现可
华中科技大学 2021-04-14
大型风电叶片磨抛移动式加工机器人系统
本成果提出了一种新型的移动式磨抛加工机器人方案,实现了具有高转动输出特性的并联机构构型创新设计与尺寸参数优化,建立了机器人整机高刚度高能效设计方法,开发了高能量密度关键驱动单元,搭建了开放式机器人控制系统并研制了移动式混联磨抛机器人系统样机,攻克了机器人精度保证难题并实现了末端执行器的准确定位。 项目研究了曲面自适应的主被动耦合柔性磨抛法兰,建立材料去除模型以研究进给速度与接触力同步耦合规划方法、开发了面向大型风电叶片磨抛加工余量检测的原位视觉测量系统,进行了面向大型风电叶片磨抛的原位视觉测量-余量补偿-力控加工的自适应打磨与验证,为大型风电叶片力控磨抛工艺系统设计提供了理论基础和实现手段。 并且项目研制基于玻璃钢叶片高光反射表面三维激光扫描测头,构建了面向超大叶片的多移动机器人协作型激光三维测量系统,并完成了大型风电叶片测量软件的开发,实现风电叶片高精度定位以及健壮、高效高精的多机器人协作测量与叶型分析。 【技术指标】 【市场前景】 目前机器人打磨技术在汽车零部件、五金卫浴、3C电子、工业零件、医疗器械、航空航天和轨道交通等行业已经有较为成熟的应用。但相对焊接、喷涂、搬运码垛等机器人应用来说,打磨应用规模还比较小,随着人口红利的消失、产品成本降低和产品质量提高的要求,这一细分领域也蕴涵着巨大的发展潜力。近几年,我国打磨机器人行业市场规模快速增长,从2012年的15.58亿元增长到了2022年的96.1亿元,年均复合增长率达到18%,未来随着劳动力结构的改变及智能制造的发展仍有开拓增长空间。
华中科技大学 2023-07-19
风力发电机的横向加热融冰叶片和融冰设备
本实用新型公开了一种风力发电机的横向加热融冰叶片和融冰设备。在风力发电机叶片上设置加热层、绝缘层、防雷层包裹住叶片蒙皮。加热层由加热电源导线嵌入加热材料中完成。加热层采用径向导电和横向加热方式。在径向导电中,加热层由加热材料和加热电源导线构成。在横向加热中,加热层由横向导线和加热横带、绝缘横带构成,加热横带与绝缘横带间隔分布。加热横带有横向带状和横向开窗两种。自动融冰设备由开关电路、微处理器和通信模块构成。在控制中心的控制下,微处理器对开关电路进行控制,进行融冰或结束融冰。本实用新型能及时判断叶片是否结冰,自动实时融冰,有效避免因结冰导致风力发电机停机,提高生产质量和效率。
四川大学 2017-12-28
果树机械化疏花装备
果树疏花作业是决定果园产量的关键工序之一。人工疏花劳动强度大,不能适应果园规模化发展的需求;而化学疏花剂的喷施容易过量,易于造成花朵、幼果的“误伤”,严重影响疏花作业机械化的进程。 针对这种现状,本项目提出果树机械疏花装备的研发和试制。针对规模化矮密集约栽培果园,建立梳齿式疏花机构有选择的疏除多余花朵;基于微型压电泵的微流量易于控制等特点,建立基于微型压电泵的指节式喷药机构实现对目标花朵进行化学疏花剂的精准喷施;研究机械物理疏花和化学疏花的有效融合机理,按农艺要求规则疏花,结合生产实际果树各项物理特性对疏花的影响,研制自动化、精准对靶的果树机械疏花装备。
青岛农业大学 2021-05-07
果树机械化疏花装备
果树疏花作业是决定果园产量的关键工序之一。人工疏花劳动强度大,不能适应果 园规模化发展的需求;而化学疏花剂的喷施容易过量,易于造成花朵、幼果的“误伤”, 严重影响疏花作业机械化的进程。 针对这种现状,本项目提出果树机械疏花装备的研发和试制。针对规模化矮密集约 栽培果园,建立梳齿式疏花机构有选择的疏除多余花朵;基于微型压电泵的微流量易于 控制等特点,建立基于微型压电泵的指节式喷药机构实现对目标花朵进行化学疏花剂的 精准喷施;研究机械物理疏花和化学疏花的有效融合机理,按农艺要求规则疏花,结合 生产实际果树各项物理特性对疏花的影响,研制自动化、精准对靶的果树机械疏花装备。
青岛农业大学 2021-04-11
机械振动理论与测试技术
成果与项目的背景及主要用途: 振动是一种常见的物理现象,如桥梁的振动、机床的振动,钟摆的摆动,飞 机机翼的颤动,汽车运行时车体的振动等等。振动可以分为线性振动(包括自由 振动、衰减振动、强迫振动)、非线性振动(包括自激振动、超谐共振、亚谐共 振)和随机振动等。 振动的存在会使机床的加工精度降低、精密仪器的灵敏度下降,还会引发噪 音、污染环境,车辆振动影响舒适性和车辆寿命,这是不利的一面。 45天津大学科技成果选编 利用振动的特征,设计制造机械设备,可以达到为人类服务的目的。例如利 用振动可以设计制造振动抛光机、振动研磨机、振动输送机、地震仪、振动打桩 机、混凝土振捣器、振动筛、振动磨、振动式压路机等机械设备。 技术原理与工艺流程简介: 设计利用新型振动传感器将测到的实际振动机械量转化为电信号,再通过信 号放大输出,达到振动检测利用的目的。 技术水平及专利与获奖情况: 解决了动车组转向架运动稳定性问题、普通客车转向架振动强度大的问题 教育部科学技术进步二等奖。工程非线性动力学:基础理论与应用研究 应用前景分析及效益预测: 可以广泛的应用于车辆振动检测应用、用于设计制造具有舒适度高、轮轨力 低、低噪声、低振动等特点的“和谐号”动车组。 应用实例: 1、北京型内燃机车 通过机车振动试验分析,模态分析(振型)和故障诊断, 解决了机车振动问题,司机舒适度问题。 2、天津三峰 TJ6481A 客车 通过故障诊断,实验模态分析(振型),减小了 振动强度,增加了舒适感,通过优化计算解决了中门的强度问题。 3、静园(末代皇帝旧居)和段祺瑞旧居 通过动力学测试进行了历史风貌建 筑的健康诊断及振动的模态分析。 4、渤海钻井平台 通过对渤海钻井平台的强度计算,解决了局部补强问题。 应用领域:机械设计与制造、工程建筑、历史风貌建筑维护等。 
天津大学 2021-04-11
车辆液力机械传动装置
Ø  成果简介:车辆液力机械传动装置采用了液力传动、三自由度定轴式动力换档变速机构、液压无级转向等技术,代表着我国履带车辆行业传动装置的技术水平,反映出了当代国际履带车辆的发展趋势。匹配发动机功率220kW~440kW,发动机转速2000 r/min~2600r/min。该装置的零件结构简单,箱体、轴、齿轮等的加工工艺要求低;性能上先进,操纵灵活方便,根据需要可以配置手动或自动换档。可直接应用到各类履带车辆、履带式工程机械等车辆上,其技术适用于各类车辆传动装置。北京理工大学研发的
北京理工大学 2021-01-12
液压机械复合无级传动
Ø  成果简介:车辆的无级传动被认为是理想的传动形式,无级传动系统可以根据路面状况和发动机工作状态使车辆获得最佳的行驶性能,适应了车辆的经济性、动力性、舒适性的要求。液压机械复合无级传动克服了液压无级传动效率低、大功率液压元件加工生产困难等缺点,可广泛应用于轮式及履带车辆无级变速及履带车辆无级转向系统中。可以实现车辆无级变速和履带车辆无级转向功能。Ø  项目来源:自行开发Ø  技术领域:先进制造Ø&
北京理工大学 2021-01-12
首页 上一页 1 2
  • ...
  • 9 10 11
  • ...
  • 48 49 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1