高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于AI-VR的肺部辅助诊疗系统
东北大学医学影像智能计算教育部重点实验室团队研发的肺部精准诊疗医学影像AI-VR 辅助诊疗系统适用于肺部医疗、肺部手术术前规划、术中导航、教学、肺部CT图像分割等医学临床领域。传统的肺部医疗诊断中,主要是通过观察肺部二维切片图像去发现病原体,往往只能靠医生的经验来判断,而具体病灶何在、几何形状、大小及周围生物组织,是无法通过二维图像去观察,其术前分析与方案设计是借助二维肺部CT影像或计算机成像来观察判断,缺乏沉浸感、立体感和交互性。基于虚拟现实技术并结合实验室的技术与数据储备优势,开发了一套基于VR的AI肺部辅助手术系统,致力于肺部三维重建,为医疗人员更好地解决了医生面对大型手术准备不足的问题。
东北大学 2021-04-10
角膜塑形配镜AI芯片及系统
全球近视病发病率逐年增加,到2050年全球人口近一半的人口将患近视病。角膜塑形镜是-种非创伤性的近视治疗技术,在全世界得到广泛应用。仅在中国每年就有超过100万病人接受角膜塑形镜治疗。在角膜望形镜配镜过程中,由于参数组合众多,传统办法依赖于医生经验,因此配镜质量难以控制、效率不高、费时耗力。本成果是全球首个基于人工智能算法的角膜塑形配镜解决方案,实现了拥有完整自主知识产权的算法和芯片,比传统方法提高效率10倍以上,同时极大保证了配镜提高质量。本成果与“爱尔眼科集团”联合开发,临床测试的配镜准确率达90%以上。
电子科技大学 2021-04-10
人工智能边缘实验平台 (AI Edge Platform)
人工智能边缘实验平台为标准的2.5U机架式设备,配置20块FPGA开发板(Cyclone® V SoC系列),可供20位学员同时进行FPGA设计、调试、下载及相关验证,并具备SoC网络技术和FPGA远程调试技术,通过网络为教学实验提供配套服务,实现在线实验室的虚拟仿真技术。AI Edge Platform is a standard 2.5U rack server,which is equipped with 20 FPGA Development Boards  (Cyclone® V SoC  FPGA Series). It can be used by 20 students to design,debug,download and verify FPGA at the same time. It also has SoC network technology and FPGA remote debugging technology,and provides support for teaching experiments through the network;realizes the virtual simulation technology of online laboratory.
英特尔FPGA中国创新中心 2022-05-24
人工智能边缘实验平台 (AI Edge Platform)
人工智能边缘实验平台为标准的2.5U机架式设备,配置20块FPGA开发板(Cyclone V SoC系列),可供20位学员同时进行FPGA设计、调试、下载及相关验证,并具备SoC网络技术和FPGA远程调试技术,通过网络为教学实验提供配套服务,实现在线实验室的虚拟仿真技术。AI Edge Platform is a standard 2.5U rack server,which is equipped with 20 FPGA Development Boards  (Cyclone V SoC  FPGA Series). It can be used by 20 students to design,debug,download and verify FPGA at the same time. It also has SoC network technology and FPGA remote debugging technology,and provides support for teaching experiments through the network;realizes the virtual simulation technology of online laboratory.
重庆海云捷迅科技有限公司 2022-06-17
种冰箱换热器性能测试系统制冷剂供应装置及测试方法
一种用于测量冰箱蒸发器和冷凝器换热量和换热系数的实验测试系统的制冷剂供应机组。冰箱换热器性能测试系统制冷剂供应机组,包括压缩机、冷凝器进口温度控制系统、辅助冷凝器、冷凝液体流量计、冷凝压力控制系统、储液器、过冷器、蒸发器供液流量计、节流阀组、辅助蒸发器、蒸发压力调节阀、温度传感器、压力传感器、切换阀及其他辅助设备。该机组具有运行参数可控性好、测试精度高、能够模拟冰箱运行条件下蒸发器和冷凝器的实际运行环境的优点。本设备及方法为冰箱、冷柜等生产商开发新产品、提高产品性能所必须的,国内和东南亚的企业目前都没有这种设备,因此,该设备具有比较好的市场前景。
青岛大学 2021-04-13
篮球赛事AI短视频剪辑系统
视频剪辑是一项简单却繁琐的工作,需要投入大量的人力。而且人力完成的视频剪辑,剪辑结果有着很强的主观色彩。通过采集大量各类体育赛事数据进行模型训练,利用深度神经网络良好的自主学习能力,采用Centernet作为多目标检测能力的实现框架,同时利用Transformer重构目标检测进行连锁,二次捕捉目标检测的准确性。CenterNet和Transformer的融合,实现了端到端的目标检测,在准确性提升的基础上满足实时处理视频的要求。综合应用多目标检测跟踪以及多模式识别技术,实现短视频的智能化剪辑,极大程度减少了人工工作量,同时也增加了短视频剪辑的客观性,在大数据时代背景下有着重要的现实意义。
太原科技大学 2021-05-04
新冠肺炎影像学AI智能辅助诊断研究
“现阶段医生需要在大量影像数据中快速诊断出新冠肺炎的病例,此外还需要诊断出病灶分布的位置、大小等来评估严重程度。”薛向阳介绍,针对临床的现实需求,团队将设计目标定位于“肺炎分类鉴别”和“关键病灶检测”两大功能,前者是为区别健康状态、新冠肺炎、其他病毒性肺炎、细菌性肺炎,后者则为找到并分隔出磨玻璃影等病灶区域。针对这些需求,团队设计诊断算法模型,让机器利用模型进行训练,学习不同类型肺炎在CT影像表现上的不同特征,最终具备智能辅助诊断的能力。而这需要突破小样本学习、小目标检测等多个技术难题。“小样本学习”即在较少训练数据样本的条件下进行机器学习。在疫情发生前期,能够获取的新冠肺炎影像数据相对较少,且由于一线影像医生任务繁重,无法获得大量专家标注,因此需要算法在少量样本的条件下“自学成才”。为此,团队采用基于自迁移学习的半监督学习等技巧,使算法具备一定的“小样本学习”能力,在不增加医生标注工作量的情况下较好地提高了算法模型的普适性。由于CT影像切片中的病灶区域有大有小,且往往大中小病灶区域面积悬殊,如何使算法能同时检测大、中、小各个目标是另一大难题。团队利用神经网络的层次性特点与病灶区域的大小进行对应,“网络的底层关注细节,即小病灶区域,而网络中层到高层所关注的病灶区域则越来越大,因此模型通过不同层次的加权和融合,最终便能达到同时检测大小病灶区域的目标。”薛向阳解释道。“不过,即便有诊断‘神器’,影像科医生也是不可替代的。”薛向阳说,人是复杂的机体,病毒在不同人体内感染的反映也不一定相同。”他表示,当遇到机器未曾学习过的微小病变或疑难病例时,仍需要影像医生的经验和智慧。以解决实际问题为目标,该项目在研究过程中始终与临床应用紧密结合。无论是机器学习数据,还是测试评估数据,都来源于临床真实病例。在算法模型定型过程中,为了检验模型的准确率和泛化性,团队也利用现实疑似病例进行了测试。
复旦大学 2021-04-10
基于AI 机器学习的影像组学模型研究
2019年12月以来,由SARS-CoV-2病毒感染导致的新型冠状病毒疾病(COVID-19)在全球开始蔓延。报道显示,SARS-CoV-2感染患者的中位住院时间为10天,而武汉患者在发病10天后症状有可能加重。因此,住院时间是COVID-19临床预后的重要指标之一。 目前,CT影像学已成为COVID-19肺炎的诊断和监测工具,主要表现为磨玻璃影、实变及混合密度影。然而,现阶段的影像学研究主要集中于对病灶的定性和半定量描述,缺乏对病灶的全定量分析。因此,基于前期提出的CT定量监测COVID-19肺炎病程,团队假设在CT病灶背后的高通量影像特征“隐藏”了患者预后转归的“秘密”。 本研究纳入了兰州、安康、丽水、镇江、临夏5家新冠肺炎定点医院,自2020年1月23日到2月8日期间住院患者的临床资料和首次CT资料,所有患者经RT-PCR证实SARS-CoV-2病毒感染。至2月20日,研究共纳入31例治愈出院的患者(排除14例未出院患者和7例首次CT检查无肺炎表现患者),并将10天作为住院时长的二分类阈值。基于有限的样本量,团队将4个中心作为训练队列,另外一个中心作为验证队列。通过自动分割肺叶和半自动分割病灶,31名患者中累计分割出72个病灶。在对病灶图像预处理后,提取影像组学特征并筛选。为了研究影像组学特征的稳定性,团队使用了Logistics回归模型和随机森林模型对筛选的特征分别进行建模和验证。​结果发现,6个筛选出的二阶特征在两种不同分类器中均表现出良好的预测价值。在外部测试队列中,Logistics回归模型的AUC为0·97(95%CI 0·83-1·0), 敏感性 1·0, 特异性0·89;随机森林模型的AUC为0·92 (95%CI 0·67-1·0),敏感性 0·75, 特异性1·0。随后,研究又纳入了2月20日-28日新出院的6名患者,利用已建立的影像组学模型可以正确预测所有6名患者的住院时间。 
东南大学 2021-04-10
AI在5G系统中应用的研究
中国电子学会发布“电子信息领域优秀科技论文(2020)遴选活动”入选论文。东南大学尤肖虎、张川、谈晓思、金石、邬贺铨联合署名的论文《AI for 5G: research
东南大学 2021-01-12
大数据背景下AI同传翻译质量研究
一、项目进展 创意计划阶段 二、负责人及成员 姓名 学院/所学专业 入学/毕业时间 学号 赵玉蓉 外国语学院/英语 2016/2020 201631131102 三、指导教师 姓名 学院/所学专业 职务/职称 研究方向 阮先玉 外国语学院/英语 教研室主任/副教授 语言学、翻译 四、项目简介 随着互联网的发展,机器翻译成为翻译活动中的重要的辅助工具。而机器翻译错译、死译频出,给翻译工作带来诸多不便。近年来,“大数据”的出现为机器翻译带来了新希望,其独特的“4V”特点将对机器翻译产生革命性的影响。尤其最近出现的AI同传给翻译行业带来了不小的冲击,本项目希望通过探究大数据在AI同传中的应用,分析AI同传翻译的优点和局限性,推动机器翻译的发展。
西南石油大学 2023-07-18
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 681 682 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1