高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
新生儿生长发育指标测量及护理模型
XM-YES新生儿生长发育指标评定测量及护理模型   功能特点: ■ XM-YES新生儿生长发育指标评定测量及护理模型(儿科常用体格指标测量模拟人)为整体婴儿,体表标志明显,便于操作。 ■ 采用高分子材料制成,环保无污染,肤质仿真度高。 ■ 婴儿体格检查:身长、体重、头围、胸围、腹围、上臂围等,测量值均在该月龄的数值范围内。 ■ 可练习婴儿抱持、包裹、换尿布、穿衣、擦浴、清洁五官、皮肤护理等多项护理操作。
上海欣曼科教设备有限公司 2021-08-23
一种入耳式微电流与声音治疗耳鸣系统及治疗仪
该疗法是一项创新的、高效的、服务于耳鸣病人的具有良好前景的智能便携式医疗设备。 一、项目分类 显著效益成果转化 二、成果简介 耳鸣(Tinnitus)是指在无内在或外界声源时感知的声音。耳鸣的发生率大约为10%-15%,其中,约10%-20%人口的生活深受耳鸣影响,部分耳鸣患者伴有焦虑和抑郁症状。另外,耳鸣不仅降低患者个体的生活质量,还加重社会经济负担。很多研究者在探寻有效治疗耳鸣的方法,如耳鸣习服治疗,但这些治疗方法对耳鸣症状的改善效果不佳,且个体之间的疗效存在很大差异。目前仍没有完全有效治疗耳鸣的方法,这可能是因为耳鸣确切的神经生理机制仍不清楚。    近年来,随着对耳鸣中枢机制的深入研究,根据耳鸣旁抑制障碍中枢机制学说产生了切迹滤波音乐治疗。该治疗通过滤除以耳鸣频率为中心的一段频率范围,引起切迹范围内频率相应听觉皮层神经活动减弱,而邻近的神经元会被激活并通过旁抑制方式对耳鸣频率相关神经元进行抑制。 有研究表明该方法具有较满意的临床治疗效果,蔡跃新团队早期研究也发现了短期切迹音乐治疗能有效改善耳鸣的主观症状。    迷走神经刺激( vagus nerve stimulation,VNS) 是通过外科手术将线圈放在左颈部内的迷走神经上,调整电刺激参数与模式,自动刺激迷走神经来达到调节大脑皮质兴奋性的作用。Hyvarinen 等研究发现,VNS可以成功调节与耳鸣相关的β波(频率为12~30 Hz)和γ波(频率为30~48Hz),因此可能作为治疗耳鸣的新方法。同时先前研究通过fMRI 和脑电路已经证明迷走神经耳支刺激可以激活迷走神经系统。Ylikoski 等分析了97例接受经皮 VNS 刺激15~60 min前后心率变异性( heart rate variability,HRV) 的变化。因为严重耳鸣患者常常表现出自主神经系统紊乱,而自主神经系统失衡往往表现出 HRV 的降低,所以 HRV 可以反映出VNS的治疗效果。研究发现,约3 /4患者的交感神经优势降低,即其对自主神经系统平衡的恢复起到了促进作用。曾祥丽等通过对 64 例慢性耳鸣患者的经皮VNS,发现经皮VNS能减轻患者焦虑障碍,改善睡眠质量,有超过 80% 的患者获得一定程度的主观症状改善。经典的VNS术是在颈部植入迷走神经刺激器,需要手术植入,手术取出,部分患者出现声嘶等并发症。具有一定的手术风险,成本较高。 蔡跃新团队早期研究设计外耳道经皮迷走神经刺激器,结合个性化切迹声治疗方案,是为国际首创,具有独立的知识产权。前期声治疗临床试验表明,在经过3个月治疗后,患者耳鸣严重程度明显降低,且具有较高的接受程度、依从性以及安全性。该疗法是一项创新的、高效的、服务于耳鸣病人的具有良好前景的智能便携式医疗设备。
中山大学 2022-08-12
基于相关辨识技术的电法勘探方法
(1)采用相关辨识技术对地下介质进行系统辨识,有效压制电法勘探中的噪声并提高观测效率。(2)通过辨识结果(冲激响应、阶跃响应或频率响应)获得更多的观测参数,实现精细探测。(3)研究地电系统相关辨识的观测方法和数据处理方法,掌握关键技术,形成观测方案,解决实际应用中出现的问题,为最终形成一套实用的勘探方法体系奠定基础。
中国地质大学(北京) 2021-04-14
一种具有抗肿瘤作用的化合物、其制备方法及应用
本发明公开了一种具有抗肿瘤作用的化合物、其制备方法及应用。所述化合物为 1-(2,4-二氯苄基)-1H 吲唑-3-碳酰肼和具有抗肿瘤作用的蒽环类化合物通过酰腙键相连。其制备方法包括以下步骤:(1)将1-(2,4-二氯苄基)-1H 吲唑-3-碳酰肼、蒽环类抗肿瘤化合物和催化剂共溶于有机溶剂中;(2)室温下反应 8 至 24 小时;(3)减压浓缩至原体积的 1/5 至 1/20,采用重结晶法纯化,干燥。本发明提供的化合物,经细胞代谢成阿杜丁和蒽环类抗肿瘤化合物,实现共同转运,IC50 值显著低于游离的蒽
华中科技大学 2021-04-14
通过改善缺氧微环境提高 PD-1 抗体疗效的靶向纳米抗癌药物的研发
针对肿瘤缺氧所致PD-1抗体不敏感,本项目利用白蛋白及ROS响应链接子将PD-1抗体与富氧血红蛋白(Hb)及ATO包裹成纳米颗粒。 一、项目进展 创意计划阶段 二、负责人及成员 姓名 学院/所学专业 入学/毕业时间 张琰 第二临床医学院/临床医学 2019.9/2024.6 梁洛绮 第一临床医学院/临床医学 2018.9/2023.6 三、指导教师 姓名 学院/所学专业 职务/职称 研究方向 侯鹏 第一临床医学院 副主任/教授 肿瘤生物学 杨琪 第一临床医学院 副主任/副教授 肿瘤生物学 四、项目简介 目前,尽管晚期肿瘤免疫治疗取得巨大突破,仍有大量患者对PD-1抗体不敏感。主要原因是实体肿瘤灌注不良,缺氧、酸化,抑制免疫。阿托伐醌(ATO)为线粒体Complex III抑制剂,能有效降低组织氧耗改善缺氧,但生物利用率低毒性大,应用受限。针对肿瘤缺氧所致PD-1抗体不敏感,本项目利用白蛋白及ROS响应链接子将PD-1抗体与富氧血红蛋白(Hb)及ATO包裹成纳米颗粒。研究结果证实该颗粒能肿瘤局部富集,链接子遇肿瘤微环境高含量ROS解离释放Hb 、ATO及PD-1抗体,瘤细胞对ATO的利用提高,氧耗降低。此外,Hb氧递送实现多途径改善缺氧,显著提高PD-1抗体疗效,具有潜在医学转化价值。
西安交通大学 2022-08-10
发现内脏血管畸形的重要致病基因
通过基因分析以及细胞和斑马鱼模型实验,证实DDX24基因突变导致了该家族患者的内脏血管畸形,并将其命名为多器官静脉淋巴管畸形综合征。后续通过基因诊断和靶向治疗,该家族两名本已病入膏肓的患者目前临床症状得到明显改善。       除以上发现外,依托大科研平台优势以及大学附属医院丰富的临床资源,单鸿教授团队还收集了近500例散发病例进行深入研究并揭示:DDX24突变不仅限于上述家系的患者中,还存在于具有相似畸形血管表型的散发病例中,且检出率高达17%,提示该基因在血管畸形中的重要作用。       血管畸形发病率高,绝大部分发病机制不明,诊断和治疗均存在很大困难;尤其是内脏血管畸形,由于发病部位隐匿,主要依赖MRI、CT等影像检查发现,大多数病人就诊时已发生严重并发症。       血管畸形致病基因DDX24的发现为临床研究提供了新方向,有望成为血管畸形新的诊断依据和治疗靶点。
中山大学 2021-04-13
成纤维细胞生长因子的临床转化及相关新药研究进展
成纤维细胞生长因子(FGF)调节人体发育的过程,以旁分泌或内分泌的方式调控血管形成,损伤修复,胚胎发育和代谢调控等一系列重要生理病理过程.FGF用于烧伤创面及慢性溃疡创面治疗已经有新药上市应用.最近发现的以内分泌方式调控胆汁酸,葡萄糖和磷酸盐平衡的FGF19亚家族将拓展FGF家族的新功能.综述FGF在创伤修复,糖尿病,低磷血症等疾病治疗中的应用,以及FGF受体抑制剂作为抗肿瘤药物的研究进展,探讨FGF在中国的基础与应用研究进展.
吉林农业大学 2021-05-04
一种基于相关性去除的差分隐私数据发布方法及系统
一种基于相关性去除的差分隐私数据发布方法及系统,各数据拥有者分别对自己的原始数据集进行 分段并得到差值数据集,对差值数据集的前两项求和并加噪,然后同态加密后上传给云服务提供商,云 服务提供商进行同态解密运算;各数据拥有者对差值数据集项进行变换得到变换系数,加入由相互独立 且服从高斯分布的白噪声所组成的平稳噪声;数据拥有者进行逆小波变换得到加扰后的数据集,上传到 云服务提供商;云服务提供商利用维纳滤波进行滤波,当数据使用者请求数据集时,云服务提供商对求 精后的数据集进行反变换,发布给第三方数据使用者的数据项。本发明有效减少了数据计算量和交互量, 提高了资源利用率和数据可用性。
武汉大学 2021-04-13
血管挑针
血管挑针,它包括2~5ml注射器用的针座(1)、针头(2)和设置在针头(2)尖端的针眼斜面(3),针头(2)固定安装在针座(1)上,针头(2)的直径为0.50~0.55mm,针头(2)的长度为19~22mm,针头(2)的顶端部分垂直于针座(1)设置,且该端部分与针座(1)的连接部分呈L形状;针头(2)由止血钳弯曲而成。
成都中医药大学 2015-05-15
中山大学谢晓燕、帅心涛团队发表肿瘤免疫治疗新成果
纳米囊泡的水腔包裹STING激活剂,表层通过MMP-2敏感的短肽PLGVRG偶联抗PD-L1抗体。同时,通过酸敏感的酰胺键偶联PEG,可阻碍抗PD-L1抗体与PD-L1阳性的正常组织结合,从而赋予了纳米药物的隐身性能。
中山大学 2022-05-30
首页 上一页 1 2
  • ...
  • 10 11 12
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1