高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
26021氢燃料电池实验器
宁波华茂文教股份有限公司 2021-08-23
26020氢燃料电池演示器
宁波华茂文教股份有限公司 2021-08-23
车用燃料电池螺杆压缩机技术
空气压缩机为燃料电池提供电化学反应所需要的氧气。将空气压缩到一定压 力(通常在 1.3~3.2bar 范围内),有助于提高电堆的功率密度,是燃料电池汽 车降低成本、实现轻量化的重要技术手段。为了满足燃料电池最高功率,空气压 缩机应保证足够的流量,根据估算,100 kW 的电堆功率大约需要 300 Nm3·h-1 的空气。除了保证一定的压力和流量外,燃料电池车用空气压缩机还需要满足其 他要求,包括压缩气体绝对无油,以防止催化剂中毒;压缩效率高,减少压缩气 体需要的额外能耗;能对启停、加速、刹车、制冷、供热等各种工况变化做出准 确、快速响应,具有良好的工况适应性;在极端工况和气候条件下,具有良好的 可靠性和长久的寿命,且维护简便;结构紧凑,体积小,重量轻。对效率、可靠 性、工况与环境的适应性、体积与重量等指标的综合要求,特别是对压缩气体绝 对无油的严格限制,使得燃料电池车用空气压缩机的产品研发及其产业化存在不 可忽视的技术挑战。
西安交通大学 2021-04-10
中温固体氧化物燃料电池技术
青岛科技大学 2021-05-11
新型能源材料及燃料电池研究
“氢化燃烧合成(HCS)镁基储氢合金”项目,先后获得国家自然科学基金、国家“863”项目和江苏省高技术研究重大项目的资助,并与美国通用(GM)公司开展国际合作。主要研究HCS和高能球磨(MM)复合制备纳米镁基储氢材料的工艺条件;研究高容量、高活性镁基储氢材料的HCS反应过程和MM复合机理;研究HCS+MM制备镁基储氢材料结构特性,揭示低温高容量高活性储氢机理。纳米镁基储氢材料的主要技术指标:(1)储氢量> 5.5 wt.%,(2)吸氢温度< 100℃,五分钟内吸氢达到储氢量90%,(3
南京工业大学 2021-04-14
首台氢燃料电池混合动力机车轨道交通大功率燃料电池发电系统
2021 年 1 月 27 日,由西南交大与中车大同联合研制的我国首台氢燃料电池混合动力机车,在中车大同电力机车有限公司成功下线,标志着我国氢能轨道交通技术取得关键突破。该车采用西南交通大学陈维荣教授团队研发的轨道交通大功率燃料电池发电系统,突破了燃料电池混合动力系统集成、系统优化控制以及能量管理等核心技术,电堆采用国际领先、可低温启动的日本丰田金属电堆,这也是燃料电池金属电堆在轨道交通领域的首次应用。该车设计时速每小时 80 公里,满载氢气可单机连续运行 24.5 小时,平直道最大牵引载重超过 5000 吨,在不用改变任何铁路基础线路条件下,可在各类机务段、车辆段、编组站以及大型工厂、矿山、港口等场所执行运转、调车、救援等多用途任务。 陈维荣教授团队自 2008 年起,在我国率先开展氢燃料电池在轨道交通中的应用研究,开拓了氢能轨道交通研究方向。历时十余年的技术攻关,团队突破了大功率燃料电池优化控制、混合动力系统能量管理、故障诊断与寿命预测等关键技术,于 2013 年成功研制我国首辆燃料电池电动机车,并于 2016 年与中车唐山公司联合研制成功世界首列燃料电池混合动力有轨电车,引领了我国氢能轨道交通技术发展。 
西南交通大学 2021-04-13
燃料电池关键材料和组装工艺
燃料电池技术应用的关键在与新材料的开发,基于材料的优化得到更好的燃料电池产电输出性能。项目团队基于固态离子理论,设计了一系列燃料电池电极新材料及新结构,以提高电池输出性能为目的,开发了一系列高性能的阳极功能材料,阴极层材料与新结构。项目取得完整知识产权,申请发明专利15件,授权发明专利8件。
南京工业大学 2021-01-12
氢氧燃料电池阴极催化剂设计
中国科学技术大学合肥微尺度物质科学国家研究中心及化学与材料科学学院的曾杰教授团队和国家同步辐射实验室鲍骏教授团队合作,通过精准的氧化刻蚀,调控钯铂合金的形貌和组分,设计并构筑出了超立方体框架结构催化剂,其在氢氧燃料电池阴极反应中表现出高活性和高稳定性。研究成果以 “Pd-Pt Tesseracts for the Oxygen Reduction Reaction”为题发表在《美国化学会志》上(J. Am. Chem.Soc. 2021,doi.org/10.1021/jacs.0c12282)。该研究团队受三维立方体向四维超立方体演变的启发,将钯铂均匀合金立方体进行氧化刻蚀,通过精准调控钯原子的去除和余下钯原子与铂原子的重排,得到钯铂合金超立方体框架结构(图 1)。此外,通过调节初始立方体中钯、铂两种元素的比例,还可以得到八足体和立方框架结构。在氢氧燃料电池阴极催化测试中,立方框架结构、超立方体结构和八足体结构的单位质量活性分别达到了商用铂碳催化剂的 4.1 倍,11.6 倍和 8.3 倍。此外,超立方体结构催化剂还表现出了最高的本征活性(2.09 安培每平方厘米)和优异的性能稳定性。密度泛函理论计算表明超立方体表面晶面的氧吸附能最接近于理论最优值,这一趋势与实际测试的氧还原活性顺序相一致。这种新的超立方体框架催化剂设计理念为今后相关电催化剂的设计提供了新的思路。
中国科学技术大学 2021-04-13
耦合储氢单元的燃料电池电源
1 成果简介作为一种清洁、高效的能量转换装置, 燃料电池是各种电化学电池体系中的理论比能量“ 绝对冠军”, 而且功率密度高、电流密度大, 是最先进的能量转换技术之一。燃料电池在发电过程中,除了提供电能以外,还会产生废热。所以传统燃料电池电堆中,单片燃料电池之间通常设有冷却板,需要采用大流量的空气或者冷却水来为燃料电池散热。而燃料电池工作时需要氢气作为燃料,如果以储氢合金作为氢源,则储氢合金在释放氢气时会吸收热量。 本成果将燃料电池与储氢单元进行结构的耦合,可利用储氢合金来部分吸收燃料电池发电时产生的废热,既解决了燃料电池水管理和热管理的难题,又能解决储氢单元放氢稳定性的问题,还能降低燃料电池系统寄生功率,提高系统的功率密度和能量密度。表 1 中列出了耦合型燃料电池的性能参数。本成果耦合型质子交换膜燃料电池解决了质子交换膜燃料电池的水热管理问题,能够使燃料电池系统结构更加紧凑,能量密度和功率密度更高。 上图 耦合燃料电池的内部结构及外部结构图2 应用说明经过近十年来的电动汽车、分布式电站、电源等领域的广泛示范应用(燃料电池已经在航天、军事上得到应用,燃料电池家用电源已经在日本产业化),质子交换膜燃料电池技术的成熟度已经逐渐被用户所接受。目前,其商业化主要问题是价格较高(采用进口材料成本昂贵),而本项目利用国产原材料制备燃料电池电源,燃料电池材料供应不仅有安全保障,而且还有低成本优势,可望克服燃料电池高成本的商业化障碍。3 效益分析由于目前国内外尚无同类产品,而且各行各业对新型电源的需求比较迫切,因此本成果具有较大的推广空间。 如批量生产, 本电源价格每台约 1500 元/千瓦。 来自政府的资金补助以及军事、工业、新能源等应用领域的直接采购是使燃料电池电源商业化逐渐兴盛的主因。据美国市场研究机构 Pike Research 估计, 2016 年市场上的主力燃料电池产品功率将在 100W~2kW 之间,用于替代部分铅酸电池和柴汽油发电机,主要应用于船舶、 专用车、无人载具、 战场支持系统、 备用电源、 应急电源等。
清华大学 2021-04-13
燃料电池堆膜电极检测仪
1 成果简介燃料电池应用于军事、汽车、移动设备和家庭等领域。对于新生产的燃料电池堆,或在用的燃料电池堆,常需要了解电池堆内各节燃料电池的一致性和膜电极情况,但是国内外一直缺少检测燃料电池堆膜电极的技术和测量装置。 课题组研究出一种可方便检测燃料电池堆膜电极状况参数的方法和仪器。该测量仪具有如下功能和特点:可同步测量膜电极的催化剂有效活性面积、双电层电容、氢渗透电流和阻抗;数据自动采样,结果自动处理;可用于测量燃料电池单体和燃料电池堆,解决了以往即使检测燃料电池单体膜电极也需要多台测试仪器的问题,填补了燃料电池堆膜电极检测仪器的空白。测量仪可用于科研中对燃料电池内部不一致性的检查和原因辨析,可用于对各种场合的燃料电池堆进行现场检查和老化诊断,可用作燃料电池堆初装过程中的成组选配检测工具。查新表明,国内外目前尚未发现有相似原理的仪器,具有较大的推广使用空间。测量仪包括硬件部分和软件部分。研究组已开发出测量仪的初级版,参见下图。初级版的测试软件基于 Labview 编写,界面简单易操作,通过配合电脑完成测量。研究组现在正进行开发测量仪器的升级版,期望其能够脱离电脑单独测量,更美观,更实用。  上图 初级版电池堆膜电极检测仪2 应用说明研究组应用该方法和测量仪进行了多次测量和研究,成果在国际国内会议的宣传推广中得到了许多同行的好评,并表示有购买意向。
清华大学 2021-04-13
首页 上一页 1 2 3 4 5 6
  • ...
  • 720 721 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1