高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种应用于LTE MTC电力物联网的新型发射机
本发明公开了一种应用于LTE MTC电力物联网的新型发射机,包括:DSM调制器,用于分别采样和调制基带部分输出的I、Q两路正交数字基带信号,得到两路数字电平信号;本振可变增益衰减器,用于对本振信号功率衰减并输出多路正交差分信号;上混频器,用于将两路数字电平信号变换后作为其内晶体管开关的控制信号,以控制晶体管开关选择本振可变增益衰减器输出的正交差分信号中的某一路得到和输出射频信号;可变增益射频放大器,用于对射频信号按所需增益放大;射频功率放大器,用于对射频信号功率放大;射频SAW滤波器,用于对功率放大后的射频信号滤除带外噪声。本发明具有功耗低,可采用非线性较强的射频功率放大器,提高了发射机的能量效率。
东南大学 2021-04-11
基于物联网技术的分布式设备智能运维云服务平台
“基于物联网及云计算技术的设备故障诊断及预测平台”利用云计算、物联网、大数据、移动互联网等现代信息通信技术,实现人与设备、人与人、设备与设备的实时互动,实现信息和数据的共享。软件产品以服务的方式向用户提供。减少企业的平台搭建费用、数据安全维护成本、服务器投资和维护成本、专业技术人员投入成本、软件升级维护成本等。所有云服务产品实现全移动化,支持IOS和Andriod系统的多个版本,并且与PC端数据实时同步。云平台配置了冗余容灾、异
南京工业大学 2021-01-12
公共安全领域中实现灾害预警及求救的智音物联网系统
成果简介:近年来我国突发了很多重大自然灾害及安全事故,在公共安全的预警及救援方面仍存在科技能力不足的现实问题。安全预警系统是人们获悉灾害的重要有效途径,一个功能强大的预警系统能够给人们带来宝贵的应急准备时间,尽可能的减少人们的生命财产损失,设计部署可靠而便利的安全预警系统具有重要的社会和经济意义。本项目对现有物联网应用进行了扩展,首次提出“智音物联网”的概念并设计了应用于公共安全领域的预警和求救系统。智音物联网具有更加方便自然的信息交互接口,通过语音更有效地将物联网信息传递给人。本项目对传统预警系
北京理工大学 2021-04-14
基于Dijkstra算法的高精度物联网小区无人智能运输车的设计
项目旨在设计出一款基于Dijkstra算法的高精度物联网小区无人智能运输车。该项目主要可分为两个部分:实车与模型车的同步开发和基于eclipse平台的APP开发。在实车和模型车的开发过程中,通过常规车载传感器实现小车的“智能化”,利用Dijkstra算法解决最短路径选择问题。利用计算机语言完成在eclipse平台上的APP开发,实现APP同时与实车和模型车的互联,实现智能运输小车运输末端的配送。
同济大学 2021-02-24
一种面向多云架构的网络性能提升方法
一种面向多云架构的网络性能提升方法,属于云计算领域,解 决传统多云架构系统未考虑不同云存储服务器之间性能差异的问题, 以提升网络性能。本发明采用多云架构,将用户文件通过纠删码编码 后冗余地储存在多个云存储服务器中,每个云存储服务器都只能获得 文件的部分数据,在进行文件传输时能根据实际的网络环境尽可能多 地利用性能好的云存储服务器,同时避免被性能差的云存储服务器拖 累,使得系统的网络性能比传统的多云架构系统以及任一云存
华中科技大学 2021-04-14
无线通信技术卫星通信与定位技术智能监控与物联网技术
无线通信技术VHF/UHF频段基于OFDM技术的高速数据通信系统   无线通信的突出问题:频率资源严重不足 。   我国无管会允许在这一频段进行数据的传输,如地质矿产、水利、能源、国家地震局、建设部、气象局、军队等部门的专用无线通信系统。
南开大学 2021-04-14
融合架构的高时效可扩展大数据分析平台
大数据应用的多样化 需要的计算模型、数据模型多样化; 目前每类模型需要单独的开源系统来支持(如HDFS、HBase、Neo4j、MongoDB,Flink,Spark,Tensorflow等)。 多系统导致大数据分析平台非常复杂、效率低下。研究目标:研究和开发面向新型多计算模型融合架构的、高时效、可扩展的新 一代大数据分析支撑系统与工具平台FAST(Fusion-Architecture, Scalable, Time-efficient big data analysis platform)。针对目前大数据分析平台复杂、效率低下的痛点,该系统具有三个 方面的优势:首先,这套系统采用融合架构,一方面实现关系、图、键 值、文档等多种数据模型的高效融合,另一方面实现批处理计算、流计 算的深度融合,并可以通过SQL扩展语言来进行多模型的统一查询,实现高效的跨模型查询。其次,对于复杂系统来说,时效性非常重要,这 套系统采用融合架构提高效率是实现高时效的基础,更重要的是,我们 对大数据分析从数据到用户进行了端到端的全栈时效优化。最后,对于 大数据应用来说,系统扩展性非常重要,本系统在资源层、存储层和计 算层进行了全面的扩展性优化。下面在融合架构、高时效和可扩展这三 个方面,分别详细介绍FAST系统的三个主要亮点。融合架构FAST系统的第一个亮点是融合架构,我们在技术方面的创新主要包 括多数据模型融合和多计算模型融合两方面。多数据模型融合:设计和研发了多模型数据管理与查询引擎,支持关系、图、键值、 文档等多种数据模型,实现了查询解析、查询优化、元数据管理、数据 分布等功能,将多种数据模型进行统一管理和深度融合。同时扩展了SQL语言,通过统一的查询接口支持对关系、键值、图、文档等数据进行独立访问或者跨模型查询。经过试验,多模型数据融合查询,比Spark 2.3.4的查询时间能平均减少70.7%。目前spark等现有系统还需要手工编程方式来实现跨模型查 询,所以FAST系统在易用性上也表现良好,降低使用门槛,提高开发效率。多计算模型融合:在计算层实现了最常见的批处理计算和流计算深度融合,批流融合的核心方法是在系统内部实现批和流的统一表达,批是对有限数据集 的运算,流是对无限数据流的计算,我们设计了UCollection结构对批和 流数据进行统一表达,通过识别的bounded标志,来确定是批、流、或批流融合。有了统一表达,可以开展一系列融合优化来提升系统性能。 并且对上通过Unified API统一用户的批、流接口,实现二者在编程范式上的统一表达。对于批流混合的计算,融合架构系统的查询延迟比Flink 1.4.2能减少57%,吞吐量平均可以提升到6.72倍。高时效FAST系统的第二个亮点是高时效,即缩短大数据分析的时间消耗, 提高效率。由于大数据分析平台是一个非常复杂的系统,为了做到高时效,系统不能存在性能短板,因此需要对大数据分析的整个过程进行端到端的全栈时效优化。如图中所示,自下而上,需要在多模态存储、批流融合、机器学习、人工操作各层都进行优化。对于多模态存储,面向应用负载和异构硬件特征进行自适应优化;对于批流融合计算,在统一表达基础上,进行系列融合优化技术, 包括DAG优化、迭代优化、部署优化、操作符优化等;在机器学习层面,进行模型优化、消息优化、梯度优化、概率优化 等来提高时效;而且我们也考虑到大数据分析过程中用户人工操作的时效性问题, 通过智能地进行大数据分析方法和模型的推荐,来缩减人工操作的 时间。可扩展FAST系统的第三个亮点是可扩展,由于大数据应用规模很大,数据增速快,对系统可扩展性的要求非常高,为此我们在系统的资源层、 存储层和计算层进行了全面的扩展性优化。在资源层,系统都部署在云计算的虚拟化资源之上,利用了云计算资源的弹性机制进行系统扩展。并在系统中实现了可伸缩调整模块, 能实时监控软硬件系统的状态,按照应用需求来自适应地进行弹性伸缩。在存储层,分布式存储系统扩展性的关键在于分布式共识和一致性 协议(Raft),因此提出了KV-Raft、vRaft等进行Raft的扩展优化。在计算层,我们扩展了机器学习模型的参数规模,使系统可以支持 到百亿级别的超大规模机器学习模型训练,并且性能方面有明显提 升。亮点成果:融合架构大数据分析平台目前已经在阿里巴巴双十一进行示范应用。 从2020年11月10日至11月16日一周的时间,在阿里的生产环境中,研发 的系统一直连续稳定运行,基于淘宝和天猫的实际用户信息进行大数据 分析,综合运用了本系统的存储、计算、机器学习等多个模块的能力, 累计进行了184亿件商品推荐。同时在双十一期间,基于智能交互向导技术,也面向电子商务应用 的卖家提供了“生意参谋”应用,基于大数据分析,帮助卖家分析产品 销量变化的原因,以及促销的有效手段等。
中国人民大学 2021-04-10
融合架构的高时效可扩展大数据分析平台
研究背景:  大数据应用的多样化  需要的计算模型、数据模型多样化;  目前每类模型需要单独的开源系统来支持(如HDFS、HBase、Neo4j、MongoDB,Flink,Spark,Tensorflow等)。  多系统导致大数据分析平台非常复杂、效率低下。 研究目标: 研究和开发面向新型多计算模型融合架构的、高时效、可扩展的新 一代大数据分析支撑系统与工具平台FAST(Fusion-Architecture, Scalable, Time-efficient big data analysis platform)。 针对目前大数据分析平台复杂、效率低下的痛点,该系统具有三个  方面的优势:首先,这套系统采用融合架构,一方面实现关系、图、键  值、文档等多种数据模型的高效融合,另一方面实现批处理计算、流计  算的深度融合,并可以通过SQL扩展语言来进行多模型的统一查询,实现高效的跨模型查询。其次,对于复杂系统来说,时效性非常重要,这  套系统采用融合架构提高效率是实现高时效的基础,更重要的是,我们  对大数据分析从数据到用户进行了端到端的全栈时效优化。最后,对于  大数据应用来说,系统扩展性非常重要,本系统在资源层、存储层和计  算层进行了全面的扩展性优化。下面在融合架构、高时效和可扩展这三  个方面,分别详细介绍FAST系统的三个主要亮点。 融合架构 FAST系统的第一个亮点是融合架构,我们在技术方面的创新主要包  括多数据模型融合和多计算模型融合两方面。 多数据模型融合: 设计和研发了多模型数据管理与查询引擎,支持关系、图、键值、  文档等多种数据模型,实现了查询解析、查询优化、元数据管理、数据  分布等功能,将多种数据模型进行统一管理和深度融合。同时扩展了SQL语言,通过统一的查询接口支持对关系、键值、图、文档等数据进行独立访问或者跨模型查询。 经过试验,多模型数据融合查询,比Spark 2.3.4的查询时间能平均减少70.7%。目前spark等现有系统还需要手工编程方式来实现跨模型查 询,所以FAST系统在易用性上也表现良好,降低使用门槛,提高开发效率。 多计算模型融合: 在计算层实现了最常见的批处理计算和流计算深度融合,批流融合的核心方法是在系统内部实现批和流的统一表达,批是对有限数据集  的运算,流是对无限数据流的计算,我们设计了UCollection结构对批和  流数据进行统一表达,通过识别的bounded标志,来确定是批、流、或批流融合。有了统一表达,可以开展一系列融合优化来提升系统性能。 并且对上通过Unified API统一用户的批、流接口,实现二者在编程范式上的统一表达。对于批流混合的计算,融合架构系统的查询延迟比Flink 1.4.2能减少57%,吞吐量平均可以提升到6.72倍。 高时效 FAST系统的第二个亮点是高时效,即缩短大数据分析的时间消耗,  提高效率。由于大数据分析平台是一个非常复杂的系统,为了做到高时效,系统不能存在性能短板,因此需要对大数据分析的整个过程进行端到端的全栈时效优化。如图中所示,自下而上,需要在多模态存储、批流融合、机器学习、人工操作各层都进行优化。 对于多模态存储,面向应用负载和异构硬件特征进行自适应优化; 对于批流融合计算,在统一表达基础上,进行系列融合优化技术, 包括DAG优化、迭代优化、部署优化、操作符优化等; 在机器学习层面,进行模型优化、消息优化、梯度优化、概率优化 等来提高时效; 而且我们也考虑到大数据分析过程中用户人工操作的时效性问题,  通过智能地进行大数据分析方法和模型的推荐,来缩减人工操作的  时间。 可扩展 FAST系统的第三个亮点是可扩展,由于大数据应用规模很大,数据增速快,对系统可扩展性的要求非常高,为此我们在系统的资源层、  存储层和计算层进行了全面的扩展性优化。 在资源层,系统都部署在云计算的虚拟化资源之上,利用了云计算资源的弹性机制进行系统扩展。并在系统中实现了可伸缩调整模块,  能实时监控软硬件系统的状态,按照应用需求来自适应地进行弹性伸缩。 在存储层,分布式存储系统扩展性的关键在于分布式共识和一致性 协议(Raft),因此提出了KV-Raft、vRaft等进行Raft的扩展优化。 在计算层,我们扩展了机器学习模型的参数规模,使系统可以支持  到百亿级别的超大规模机器学习模型训练,并且性能方面有明显提  升。 亮点成果: 融合架构大数据分析平台目前已经在阿里巴巴双十一进行示范应用。  从2020年11月10日至11月16日一周的时间,在阿里的生产环境中,研发 的系统一直连续稳定运行,基于淘宝和天猫的实际用户信息进行大数据 分析,综合运用了本系统的存储、计算、机器学习等多个模块的能力, 累计进行了184亿件商品推荐。 同时在双十一期间,基于智能交互向导技术,也面向电子商务应用  的卖家提供了“生意参谋”应用,基于大数据分析,帮助卖家分析产品  销量变化的原因,以及促销的有效手段等。
中国人民大学 2021-05-09
基于极化码的分段CRC校验堆栈译码方法及架构
本发明公开了一种基于极化码的分段CRC校验堆栈译码方法,包括:将信息序列分为N部分;对每一段最后一位比特在极化码码字序列中的位置进行标记;在进行堆栈译码的过程中,当译码长度到达标记位置时,实施CRC检验,若通过,则该译码路径存活,若不通过,则该译码路径被淘汰。与传统的方法相比,本发明大大降低了算法复杂度并使译码性能得到提升,并提升了译码的正确率。此外,在译码方法的基础上,硬件架构同时被提出,资源占据较传统算法实现了降低。
东南大学 2021-04-14
基于ARM+μC/OS/GUI架构的智能控制系统
研发阶段/n内容简介:本系统是一个基于ARM内核,具有多任务强实时处理能力,同时具有窗口图形人机交互界面的嵌入式智能控制系统。系统硬件采用韩国现代公司推出的32位高性能嵌入式处理器HMS30C7202,集成了ARM7TDMICPU核,存储器管理单元(MMU),8KB的高速缓冲存储器以及写缓冲器,支持STN和TFT的LCD控制器、TOUCHPANEL控制器、CAN、USB、AID、红外等,主频为70MHz。软件系统采用嵌入式实时多任务操作系统μC/OS-Ⅱ,嵌入了图形用户界面μC/GUI。根据不同的应
湖北工业大学 2021-01-12
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 123 124 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1