高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
双向线驱动下肢外骨骼助行系统
研究背景据2019年国家统计局[2]统计,截止至2018年末,65岁及以上人口为16658万人,占总人口的11.9%。老年人可能会出现腿部肌肉力量不足的现象,甚至于心理方面的问题。本项目解决了传统外骨骼存在问题电机位于关节附近导致:1. 自身重量较大2. 附加转动惯量大刚性机构拟合关节导致:3. 结构复杂4. 协调控制难设计一款便携、轻质、低附加惯量、良好人机协调性能的外骨骼机器人,是急需解决的问题。
北京交通大学 2023-05-08
纯电动汽车轮边驱动悬架系统
本成果来自有重大应用前景的横向项目。研发团队现已掌握纯电动轮边驱动悬架系统开发的关键技术,形成了完备的技术开发体系以及轮边驱动悬架系统与整车动力性、经济性、操稳性以及平顺性等性能匹配的技术规范。借鉴团队成功开发纯电动汽车整车控制器(VCU)的经验,正在开展具备协调差速、制动、能量回收功能的轮边驱动悬架系统控制单元(SCU)的预研工作。纯电动汽车轮边驱动悬架系统开发团队正在形成具备设计、开发、调试与整车匹配的系统化配套能力。
西南交通大学 2016-06-27
智能体感平衡车驱动控制系统
智能体感平衡车控制系统是用于独轮车,双轮车,带扶手车,滑板车等各类智能体感车的驱动控制系统,包括硬件系统和软件系统。智能体感平衡车领域,从 2014 年开始兴起,2015 年逐步推广,2016 年有望更加普及。其主要功能是为各类体感车提供安全,稳定的控制。选用合适的主处理器,通过加速度计和陀螺仪进行测量数据和处理数据,进而精确判断车辆倾角,运用最优的控制算法控制电机,进而驱动控制器,实现对智能体感车快速,安全,稳定的驱动控制,同时加入安全保护算法和安全装置,提高安全,可靠性。2015 年,已经完成了主控芯片,电机,驱动器,传感器等的选型,有了数据融合技术和驱动器控制技术等方面的成熟技术积累,并已开发出性能较为稳定的驱动控制板。
合肥工业大学 2021-04-14
电力精灵—电力能源装备健康状态诊断平台
一、项目进展 已注册公司运营 二、企业信息 企业名称 四川铭学智能技术有限公司 企业法人 林钰 注册时间 2017.11.29 注册所在省市 四川省成都市 组织机构代码 91510100MA6C766U7T 经营范围 计算机软硬件开发 企业地址 成都高新区天府大道北段1700号 获投资情况 / 三、负责人及成员 姓名 学院/所学专业 入学/毕业时间 学号 林钰 电信院/控制工程 2019.9/2022.6 201922000100 四、指导教师 姓名 学院/所学专业 职务/职称 研究方向 李茜 电信院/电气工程 副教授 能源系统智能感知 五、项目简介 电力精灵—电力能源装备健康状态诊断平台是集状态数据汇集、故障诊断、状态评估、检修决策推荐、三维立体显示、创新健康管理等多功能为一体的全栈式电力能源装备健康状况诊断平台。该系统改进了市面上监测系统主要存在功能单一、智能化不足、电力能源装备监测系统各自独立等问题,创新性地提出电力能源装备健康管理功能,同时覆盖变压器、海缆、蓄电池、开关柜、UPS、绝缘盘6类装备,使用户全面了解电力能源装备的生命周期及整体健康情况,为用户提供高效状态检修策略。
西南石油大学 2023-07-17
电力系统规划方案的全景模拟评估软件
一、项目简介此软件在给定的电源、电网和负荷数据的前提下,本软件对电力系统规划方案进行 8760 小时全景模拟,既可以对电源规划方案进行评估,也可以用于输电网规划方案评估,还可以针对新能源消纳、系统调峰能力、外区交直接接入、抽蓄电站建设等进行专题评估。本软件是基于课题组完全自主提出的理论而历经多年开发,所提理论系为国内首创。二、产品性能优势该软件可以逐小时模拟全年电力系统运行情况,经过多个实际系统验证,模拟结果于实际运行情况较为接近。主要特点:1. 软件对新能源中长期波动刻画准确,既可以直接利用风光大量历史数据,也可根据理论进行新能源波动模拟以解决历史数据匮乏问题。. 与传统的短期机组组合方法相比,此软件通过全年精细化的机组组合,充分考虑了电源和负荷在时间尺度上的不均匀性。. 与传统基于电力电量平衡的规划评估思路相比,软件计及了线路传输约23束和潮流断面约束,并考虑供/受外区电、抽水蓄能、热电联产、气电、光热等特殊机组和运行情况,使评估结果更具参考价值。4. 在调度方式上,具有三公调度、经济调度、节能调度等多种可选调度方式。三、市场前景及应用此评估软件已在我国西北、华中、华东的七个省级
西安交通大学 2021-04-10
新型电力系统数字动模实验平台UREP
新型电力系统仿真分析、测试验证。 一、项目分类 关键核心技术突破 二、成果简介 随着“双碳目标”国家能源战略的确定和新型电力系统概念的提出,我国能源转型力度持续加大,逐步形成了大量新能源接入电力系统的局面。由于风能、太阳能等新能源与常规能源禀性差别很大,其并网发电系统具有显著不确定性、波动性和机械惯量缺失等特点。此外,高比例电力电子装备、新一代直流输电、多能互补的综合能源、各类大规模储能电站、各种通信及自动化新技术装置等因素使得新型电力系统组成要素愈加复杂,动态特性蕴含诸多未知,造成系统规划设计、装备制造、系统集成和运行控制等都面临史无前例的挑战。目前,电力科研院所、规划设计单位、装备制造厂家、教育培训机构等对新型电力系统开展仿真分析、测试验证的需求很大、很迫切。同时看到,新型电力系统的这些新型场景对仿真技术要求苛刻,门槛很高。 1)新型电力系统需要精细化动态模拟。人们对新型电力系统动态行为的认识还不够深入,无论是基础理论层面还是工程技术层面还处于广泛讨论、观点碰撞或局部示范试验阶段。然而,电力设施的新技术路线试错成本极高,不太可能对所有备选方案和技术选项都逐一示范。因此,开展大量深入的仿真研究是推进新型电力系统实施的必要手段。对于新型电力系统,需要深入开展仿真研究的领域包括:①新型电网体系结构研究;②新能源接入电网关键技术; ③ 新能源电网保护与自动化技术; ④源网荷储协同控制与优化调度;⑤新型配电网的电能质量分析与控制;⑥人工智能等新技术对新型电力系统的支撑。 2)新能源基地并网需要做稳定性评估。大规模陆上及海上风电集中接入局部电网有可能引发次/超同步振荡、宽频谐波谐振等电网安全稳定性问题,需要对这些问题进行机理及应对策略分析。所以需要对包含多类型新能源装备的局部电网做精细化动模仿真测试。然而,百千台级风光机组电磁暂态详细建模与仿真是一个卡脖子难题。 3)软、硬件在环仿真是必要的。新能源及储能电站的电力电子变流器控制及保护策略是厂家核心机密,对外不公开。由于控保策略对装置外特性及其接入系统的响应特性有重要影响,故需要分析内部核心控保策略。需要将新能源及储能控制器实物或黑盒模型接入测试平台开展动模仿真,以对其多时间尺度动态响应特性进行精细化分析。软、硬件在环试验对仿真平台提出了更高要求。 4)超大规模储能电站的仿真难度大。①单个储能机组的设备形态发生改变,从两/三电平变流器向模块化多电平变流器(MMC)的复杂结构演变,甚至采用储能跟变流器集成,故需要对这种复杂新形态做精细化测试验证。②超大规模、超大机组的储能电站包含较多并联储能单元或者储能机组,吉瓦时级储能电站,需上百台机组并联。另外,储能变流器的控制策略正从电流源型向电压源型转变,控制策略趋于复杂化,故需要大量的储能变流器的控制装置接入测试平台,才能对实现对储能单机以及多机之间协调控制性能测试,进而实现超大规模、超大机组的储能电站的精细化仿真。 5)现代直流输电控制与保护测试提出更高要求。超/特高压直流输电系统应用于新能源基地外送的控制保护策略及其硬件在环试验对实时仿真平台硬件资源要求苛刻,既要对直流输电系统建模,又要对新能源基地建模,应用场景的复杂性对仿真平台要求更高。 1 技术分析(创新性、先进性、独占性) 1.1 国产化实时仿真技术现状 实时仿真是指仿真模型执行进度与系统时钟完全同步的一类仿真,具备这种特性的仿真装置称为实时仿真器。新型电力系统的认知、试验、生产、培训需求快速增长,形成了实时仿真领域巨大潜在市场。但目前RTDS、RT-LAB等进口设备依旧垄断市场,对于大规模新能源场站、县域规模万节点级电力系统、多端特高压直流输电等应用场景电磁暂态仿真,所需的仿真资源巨大,平台造价极高。且关键核心技术处于卡脖子状态,平台应用的灵活性和开放性受到很大限制。只有开发和推广国产化实时仿真技术才能为顺利推进新型电力系统建设过程中的研究和生产提供自主可控的工具和手段。 1.2 UREP与进口设备的对比试验  为了实现电力实时仿真器的国产化替代,彻底解决电力实时仿真领域的技术“卡脖子”问题,国产实时仿真器UREP需要与国际主流技术进行对比,力求达到甚至超过目前世界最先进的技术。对标对象为行业公认的电力系统实时仿真仪(RTDS)和行业广泛使用的RTLAB,以上两款设备均为加拿大生产。对比试验方案如图1-1所示。制定标准(典型)测试算例,分别在UREP、RTDS和RTLAB环境下搭建测试算例的仿真模型,在完全相同的测试条件和试验内容下得到各种仿真器的仿真结果,比较仿真结果的一致性。同时比对仿真规模、建模效率和编译时间等关键指标。             图1-1  国产UREP与进口设备对标方案 1.2.1电气网络仿真对比    图1-2表示了一个多支路网络,基于图1-1中三种仿真器搭建该模型,通过不断增加支路数扩大网络规模,直到仿真器过载,得到仿真器的算力极限。         图1-2  多支路电气网络 在50us仿真步长下,对于图1-2案例RTLAB最大仿真规模为78个 三相节点,UREP也为78个 三相节点,二者相同。在编译速度方面,RTLAB编译时间为3分52秒,UREP编译时间为1分12秒,UREP是RTLAB的3.22倍。      图1-3  基于RTDS的仿真模型  当基于RTDS建模时,如图2-5,每块PB5最多允许24个节点;当基于NovaCor建模时,在超大步长150us下可以达到100节点,在50us步长下仿真规模未知。 2.2.2 双馈风机仿真对比   双馈风机含有电机、传动链、电力电子变流器和控制系统,是具有代表性的新能源元件。在在50us仿真步长下,对于如图1-4案例,RTLAB最大仿真规模为6台,UREP也为6台,二者相同。在编译速度方面,RTLAB编译时间为7分0秒,UREP编译时间为2分12秒,UREP是RTLAB的3.18倍。                图1-4  双馈风机测试案例 2.2.3 直流输电仿真对比   直流输电是最复杂的电力电子装备,有换流阀、阀控制器、极控制器、站控制器等一次和二次系统,是实时仿真领域的难点,也是检验仿真器能力的试金石。图1-5是双端单极直流输电系统测试用例,每端包含2个六脉波桥,控制保护包括了阀控、极控和主控模型,封装于蓝色模块内。   图1-5 双端单极直流输电系统测试用例 将图1-5所示算例分别在RTLAB和UREP中建模运行,在单核可用资源下,若仿真对象为电气主系统和控制保护组成的整个系统,则RTLAB过载,UREP也过载。若仿真对象仅为电气主系统(即双侧电源、交直流滤波器和4个6脉波桥),则RTLAB和UREP均不过载。在编译速度方面,RTLAB编译时间为3分40秒,UREP编译时间为1分11秒,UREP是RTLAB的3.10倍。 2.2.4 同步发电机组仿真对比    同步发电机目前仍是电力系统主力电源,是电力系统的主要仿真对象。同步发电机组模型包括同步发电机、调速器、励磁调节器及升压变。搭建多台同步电机并列运行算例,如图1-6所示。   图1-6  同步电机并列运行算例 在50us仿真步长下,对于图1-6案例RTLAB最大仿真规模为11台,UREP为13台。在编译速度方面,RTLAB编译时间为3分51秒,UREP编译时间为1分16秒,UREP是RTLAB的3.04倍。 2.2.5 最小步长对比 基于CPU的最小仿真步长能够体现仿真计算时间的抖动问题,抖动越小,允许的仿真步长就越小。因此,通过比较最小仿真步长,也可以反映仿真器的计算性能。仿真对象采用单台双馈风机,模型包括风力机、绕线异步电机、机侧变流器、网侧变流器、主动系统、所接入的配电网等元素,如图1-7所示。             图1-7  测试最小步长算例 经测试,RTLAB最小仿真步长为24us,UREP最小仿真步长为20us。可见,UREP具有更小的仿真抖动。 2.2.6 仿真精度对比 为了验证国产UREP的仿真精度,采取和RTDS交叉对比验证方法说明UREP的仿真精度。电力系统仿真包括电磁暂态和机电暂态,因此,从电磁暂态和机电暂态两个方面进行对比,同时考虑各种应用场景,以覆盖各种情形。电磁暂态检测案例的电网拓扑如图1-8所示。 图1-8 电磁暂态检测使用案例 无穷大电源电压等级为110kV,频率为50Hz,系统内阻抗为;L1、L3线路阻抗为,L2、L4线路阻抗为, T1、T2两变压器的额定容量均为,短路电压,空载损耗,空载电流,短路损耗,变比,高低压绕组均为Y形联结;假设系统A1、B1、A、B处供电负荷为(5+j1)MVA,C1和C处供电负荷为1+j0.1MVA。UREP建模如图1-9所示。   图1-9 电磁暂态检测案例的UREP仿真模型 基于RTDS建立电磁暂态案例的仿真模型如图1-10所示,其电压过零点短路控制如图1-10所示。   图1-10  RTDS仿真模型   图1-11  RTDS电压过零点短路控制结构 对上述模型,分别使用UREP和RTDS进行实时仿真,仿真时间为0.2s,短路故障发生在0.06s-0.16s之间,仿真步长为100微秒,横轴表示在0.2s时间内仿真采样点数,纵轴表示母线电压、电流,单位分别为V、A。在母线A点处发生三相短路,短路前后及短路期间的三相电压波形如图16-7。为了显示细微之处,将图1-12局部放大后,如图1-13。   图1-12  A点发生三相短路时三相电压波形   图1-13  A点处发生三相短路时三相电压波形局部放大 点划线为RTDS仿真结果,虚线为UREP仿真结果。可以看出,两种仿真结果高度重合,表现出电磁暂态仿真结果的高度一致。电磁暂态过程除了表现在电压动态还表现在电流动态,短路前后及短路期间的三相短路电流波形如图1-14。   图1-14 A点处发生三相短路时三相电流波形 图1-15  A点处发生三相短路时三相电流波形局部放大图 1.3  对标结论 (1)在内核资源完全等同条件下,国产UREP和RTLAB的仿真算力基本相同,即内核授权数相同条件下,具有相同的仿真规模。 (2)国产UREP的建模效率和编译速度远远高于RTLAB。小规模场景下,UREP是RTLAB的3倍左右,大规模场景下UREP是RTLAB的45倍左右。 (3)在仿真对象完全相同的条件下,国产UREP和RTDS的电磁暂态仿真结果完全相同,二者交叉对比没有差别。
贵州大学 2022-08-15
技术需求:智能电力监护系统、电气自动化控制
智能电力监护系统、电气自动化控制 高压输配新产品,配电自动化创新技术
山东金人电气有限公司 2021-08-19
低品位热能驱动新型高效吸收/除湿空调系统
成果介绍目前的吸收式制冷空调系统,热源温度往往需要100℃以上才能满足要求,且装备体积大。当采用与溶液除湿有机结合的热湿独立处理方法后,热源温度75℃以下,系统高效运行,且体积小。 本技术从溶液除湿技术和吸收式制冷技术的相似点出发,将二者有机的结合,使用吸收式制冷系统中的发生器对除湿后的部分稀溶液进行再生,节省了再生器的占用空间。市场前景本技术可由太阳能集热器产生的75℃以下热源驱动,相比一般的溶液除湿系统能效可提升30[[%]]~40[[%]]。本技术可以用于工业建筑工位空调或者废热较丰富的场合。该技术已获中国发明专利和美国发明专利授权。
东南大学 2021-04-11
太阳能自动跟踪光伏发电驱动系统
本发明提供一种太阳能自动跟踪光伏发电驱动系统,旨在提供一种以太阳能为能源的用于太阳能集热板转动的驱动系统,它包括太阳能槽式集热板、太阳能自动跟踪仪、太阳能电池组件、电机箱、电机、传动齿轮、转动轴、蓄电池。本系统在太阳光自动跟踪仪的带动下能全天候跟踪太阳光,通过太阳能电池组件的光伏发电为太阳能槽式集热板的转动提供动力源,使该系统具有很高的光能利用率和传质效率,采用固定式太阳能电池的效率一般在10%左右,而采用自动跟踪技术可使太阳能电池效率率达到20%左右。太阳能发电所提供的驱动动力源,使本系统摆脱外接电源的束缚,做到了高效节能,自给自足。
天津城建大学 2021-04-11
低品位热能驱动新型高效吸收除湿空调系统
目前的吸收式制冷空调系统,热源温度往往需要100℃以上才能满足要求,且装备体积大。当采用与溶液除湿有机结合的热湿独立处理方法后,热源温度75℃以下,系统高效运行,且体积小。 本技术从溶液除湿技术和吸收式制冷技术的相似点出发,将二者有机的结合,使用吸收式制冷系统中的发生器对除湿后的部分稀溶液进行再生,节省了再生器的占用空间。 本技术可由太阳能集热器产生的75℃以下热源驱动,相比一般的溶液除湿系统能效可提升30%~40%。本技术可以用于工业建筑工位空调或者废热较丰富的场合。该技术已获中国发明专利和美国发明专利授权。
东南大学 2021-04-13
首页 上一页 1 2 3 4 5 6
  • ...
  • 562 563 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1