高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
原电池实验器
产品详细介绍
余姚市神马教仪成套有限公司 2021-08-23
原电池实验器
产品详细介绍
河北省北戴河教学仪器厂 2021-08-23
电池片周转车
产品详细介绍
秦皇岛宇电自动化设备有限公司 2021-08-23
电池原理(人体发电)
300mm×220mm×250mm,演示人体可发电。两边各为铜、锌两种金属,模拟电表指示。
宁波华茂文教股份有限公司 2021-08-23
04007蓄电池
宁波华茂文教股份有限公司 2021-08-23
多晶硅铸锭炉的隔热块及包括该隔热块的多晶硅铸锭炉
本发明公开了一种用于多晶硅铸锭炉的隔热块,设置在多晶硅铸锭炉的坩埚底部外周,用于坩埚加热或冷却多晶硅过程中的隔热保温,该隔热块为中空方形筒体结构,筒体筒壁为中空夹层结构,其中内壁用于包覆设置在坩埚底部的热交换块外周壁面,且该内壁与所述热交换块外周壁面具有间隙,所述外壁用于与设置在坩埚外围的竖直隔热板固定接触,所述坩埚中心线、热交换块中心线以及隔热块中心线重合,且所述隔热块顶部低于热交换块顶部。本发明还公开了具有
华中科技大学 2021-04-14
手性有机硅合成新方法
首次使用炔烃作为卡宾前体完成了一例不对称Si-H键插入反应,高效构筑了一类新型手性有机硅化合物。该反应使用手性羧酸双铑催化剂,首先促进羰基-烯-炔底物发生分子内环化现场生成双芳基金属卡宾,该金属卡宾中间体进而对硅烷的Si-H键发生高对映选择性的插入反应,给出相应的手性有机硅化合物。该反应的条件温和,底物适用范围广,大部分产物的ee值都能达到90%以上。所得的手性烯丙基硅产物能够进一步转化,例如发生烯丙基乙酰化反应,对映选择性能够得到很好的保持,因此在有机合成中具有一定的应用潜力。动力学实验表明,反应对双铑催化剂、硅烷展现出一级动力学效应,对底物则表现出零级动力学特征,说明铑卡宾对Si-H键的插入步骤是反应的决速步,这与动力学同位素实验的结果(KIE=1.5)相一致。本研究表明炔烃作为卡宾前体同样可以发生高对映选择性的Si-H键插入反应,结合炔烃化学在从简单原料构筑复杂产物上的优势,为结构多样性有机硅化合物的合成提供了新的方向。
南开大学 2021-04-10
具有紫外响应的硅基成像器件
传统的CCD、CMOS硅基成像器件都不能响应紫外波段的光信号,这是因为紫外波段的光波在多晶硅中穿透深度很小(<2nm)。但是近年来随着紫外探测技术的日趋发展,人们越来越需要对紫外波段进行更深的探测分析与认识。紫外探测技术是继激光探测技术和红外探测技术之后发展起来的又一军民两用光电探测技术。几十年来,紫外探测技术已经逐渐应用于光谱分析、军事、空间天文、环境监测、工业生产、医用生物学等诸多领域,对现代科研、国防和人民生活都产生了深远的影响。特别是在先进光谱仪器方面,国内急迫需要响应波段拓展到紫外的硅基成像器件。硅基成像器件如CCD、CMOS是应用最广泛的光电探测器件。当前最先进的光谱仪器大都采用了CCD或CMOS作为探测器件,这是因为CCD、CMOS具有灵敏度强、噪声低、成像质量好等优点。但由于紫外波段的光波在多晶硅中穿透深度很小(<2nm),CCD、CMOS等在紫外波段响应都很弱。成像器件的这种紫外弱响应限制了其在先进光谱仪器及其他领域紫外波段探测的使用。 在技术发达国家,宽光谱响应范围、高分辨率、高灵敏度探测器CCD已经广泛应用于高档光谱仪器中。上世纪中叶美国Varian公司开发的Varian700 ICP-AES所使用的宽光谱CCD检测器分辨率达0.01nm,光波长在600nm和300nm时QE分别达到了84%和50%;美国热电公司开发的CAP600 系列ICP所用探测器光谱响应范围更是达到165~1000nm,在200nm时的分辨率达到0.005nm.法国Johinyvon的全谱直读ICP,其所用的CCD探测器像素分辨率达0.0035nm,紫外响应拓展到120nm的远紫外波段。德国斯派克分析仪器公司的全谱直读电感耦合等离子体发射光谱仪一维色散和22个CCD检测器设计,其光谱响应范围为120-800nm。德国耶拿JENA 连续光源原子吸收光谱仪contrAA采用高分辨率的中阶梯光栅和紫外高灵敏度的一维CCD探测器,分辨率达0.002nm,光谱响应范围为189—900 nm。总而言之,发达国家在宽光谱响应和高分辨率高灵敏度探测器件的研制领域已取得相当的成就。主要技术指标和创新点(1)  我们在国内首次提出紫外增强的硅基成像器件,并在不改变传统硅基成像探测器件的结构的基础上,利用镀膜的方法增强成像探测器件CCD、CMOS的紫外响应,使其光谱响应范围拓宽到190—1100nm,实现对190nm以上紫外光的探测。(2)  提高成像探测器的紫外波段灵敏度,达到0.1V/lex.s。(3)  增强成像探测器件的紫外响应的同时,尽量不削弱探测器件对可见波段的响应。(4)  选用适合的无机材料,克服有机材料使用寿命短的缺陷。 紫外探测技术已经逐渐应用于光谱分析、军事、空间天文、环境监测、工业生产、医用生物学等诸多领域,对现代科研、国防和人民生活都产生了深远的影响。特别是在先进光谱仪器方面,国内急迫需要响应波段拓展到紫外的硅基成像器件,该设计与传统CCD、CMOS结合,能满足宽光谱光谱仪器所需的紫外响应探测器的需要。能提高光谱仪器光谱响应范围,在科学实验和物质分析和检测中具有很广的市场前景。 该设计样品能取代传统CCD、CMOS,应用于大型宽光谱光谱仪器上,作为光谱仪的探测器件。将传统光谱仪器的光谱检测范围拓宽到190—1100nm. 实现紫外探测和紫外分析。具有较强的市场推广应用价值。
上海理工大学 2021-04-11
关于硅基光量子芯片的研究
北京大学物理学院“极端光学创新研究团队”王剑威研究员和龚旗煌院士领导的课题组,与英国、丹麦、奥地利和澳大利亚的学者合作,实现了硅基集成光量子芯片上的多体量子纠缠和芯片-芯片间的量子隐形传态功能,为芯片上光量子信息处理和计算模拟的应用,奠定了坚实的基础。相关研究成果于近日发表在国际顶级物理期刊Nature Physics(https://www.nature.com/articles/s41567-019-0727-x)。 集成光量子芯片技术,结合了量子物理、量子信息和集成光子学等前沿学科,通过半导体微纳加工制造高性能且大规模集成的光量子器件,实现对光量子信息的高效处理、计算和传输等功能。其中,利用硅基平面光波导集成技术的光量子芯片具有诸多独特优势,包括集成度高、稳定性好、编程操控性优越和可单片集成核心光量子器件等,因此被认为是一种实现光量子信息应用的重要手段之一。 A. 硅基量子隐形传态和多光子量子纠缠芯片的示意图,左上角为集成量子光源的电子显微镜图;B. 量子隐形传态的量子线路图;C. 量子纠缠互换的量子线路图;D. GHZ纠缠制备的量子线路图 北京大学研究团队与布里斯托尔大学、丹麦科技大学、奥地利科学院、赫瑞-瓦特大学和西澳大利亚大学科研人员密切合作,在硅基光量子芯片技术和应用方面取得了突破性进展。研究团队发展了一种基于微环谐振腔的高性能集成量子光源,通过硅波导的强四波混频非线性效应,实现了光子全同性优于90%、无需滤波后处理的50%触发效率的单光子对源,达到了对4组微腔量子光源阵列的相干操控,片上双光子量子纠缠源的保真度达到了92%。团队实现了关键的可编程片上双比特量子纠缠门,可以按照功能需要切换贝尔投影测量和量子比特焊接操作,通过量子态层析实验确认了高保真的双比特纠缠操作。 研究团队在单一硅芯片上实现了高性能量子纠缠光源、可编程双比特量子纠缠门,以及可编程单量子比特测量的全功能集成,进而实现了三种核心量子功能模块——芯片上四光子真纠缠、量子纠缠互换、芯片-芯片间的高保真量子隐形传态。通过对两对纠缠光子对进行量子比特焊接操作,团队实现并判定了四比特Greenberger-Horne-Zeilinger (GHZ) 真量子纠缠的存在;通过对两对纠缠光子中各一个光子进行贝尔投影操作,实现了量子纠缠互换功能,使来自不同光子源的光子间产生了量子纠缠;利用两个芯片间的量子态传输和量子纠缠分布技术,实现了两个芯片间任意单量子比特的量子隐形传态,达到了近90%的隐形传态保真度。 团队研制的硅基多光子量子芯片尺寸仅占几平方毫米,比传统实现方法小了约5-6个数量级,不仅达到了器件的微型化,同时具备了单片全功能集成、器件编程可控、系统性能优越等特点,其中量子隐形传态保真度优于已报道的其它物理实现方法。多体量子纠缠体系的片上制备与量子调控技术,为片上量子物理基础研究和片上光量子信息处理传输、量子计算模拟的应用提供了重要基础。
北京大学 2021-04-11
含硅含硼水性聚氨酯及其制备方法
本发明的首要目的是提供一种含硅含硼水性聚氨酯,本发明的另外一个目的是提供一种上述含硅含硼水性聚氨酯的制备方法,包括以下步骤:a、称取大分子二元醇与TDI混合,在N2保护下升温至70~90°C,反应1~3h,然后先加入DMPA反应1~2h,再加入BDO反应1~3h,降温至60~70°C,接着滴加氨基封端的硅氧烷反应0.5~1.5h,降温至30~50°C,得硅氧烷封端的聚氨酯;b、将硅氧烷封端的聚氨酯置于1500~2000rpm的转速条件下,先加入TEA进行乳化、中和20~30min,再加入硼酸继续乳化
安徽建筑大学 2021-01-12
首页 上一页 1 2
  • ...
  • 13 14 15
  • ...
  • 85 86 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1