高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
含有壳聚糖纳米粒的可食用膜的产品开发及产业化
壳聚糖作为一种带有正电荷的,可生物降解的天然高分子材料,在食品及医 药领域都得到了广泛的应用。壳聚糖与聚阴离子之间可通过分子间及分子内相互 交联自发形成纳米粒,这种温和纳米粒的形成特性也促进了其在包埋活性物质领 域的应用。 制备了壳聚糖空白纳米粒及包封有活性物质的纳米粒,并将制备的纳米粒添 加到天然高分子材料中制备得到活性纳米复合膜。一方面,纳米粒小尺寸的特殊 性不会对膜的外观(如透明度、色泽等)产生较大的影响,纳米粒的加入能够增 强膜的机械性能,改善膜的透湿、透氧性。另一方面,可以将一些活性物质(如 维生素,多酚类,黄铜类及精油类等)包埋入纳米粒中,制备具有抗菌、抗氧化 等特性的活性膜。 创新要点 (1)加入壳聚糖纳米粒的可食用膜,其抗拉强度等机械性能得到显著提高; 同时,基于壳聚糖本身的抗菌能力,含有空白壳聚糖纳米粒的膜本身具有一定的 抗菌能力; (2)与壳聚糖能够形成纳米粒的聚阴离子可选范围广泛,制备的纳米粒之 间存在的差异性也带来了最终形成膜的性质的可调性; (3)在膜中添加活性物质,可以避免了活性物质与食品体系自身物质之间的不良反应
江南大学 2021-04-11
多肽药物合成工艺
多肽药物研发具有广阔的研究空间和市场应用前景。2015 年全球多肽药物市场为 175 亿美元,据预测,2015-2025 年年增长率为10.3%,到 2025 年全球多肽药物市场将增至 469 亿美元。随着多肽药物价格的平民化、蛋白相互作用新靶点以及替代传统注射给药的新型给药技术迅猛发展,多肽药物的临床应用范围将进一步得以拓展。然而,多肽药物工业化生产中存在合成步骤繁琐、成本高等一系列技术问题,导致药品价格昂贵,大大增加了医疗负担,严重影响了这些多肽新药投放市场的速度。而我国多肽药物产业与欧美相比还
兰州大学 2021-04-14
新型凝乳酶药物
复方凝乳酶胶囊被广泛用于治疗小儿消化不良、吐奶等消化道疾 病,这类药物几乎无副作用,但是复方凝乳酶胶囊存在着蛋白水解谱 窄、疗效慢,适应症少的缺点。前期,本课题组在青藏高原发现了一 种新型的、对 α 酪蛋白、β 酪蛋白、γ 酪蛋白都具有较强水解活性的 凝乳酶 YS-1,该凝乳酶在物化特性上与传统复方凝乳酶胶囊中的小 牛皱胃凝乳酶较为类似,但蛋白水解谱广,可用于替换小牛皱胃凝乳 酶,提高传统复方凝乳酶胶囊功效、扩大其适应症,尤其在婴儿促消 化、止吐奶方
兰州大学 2021-04-14
多肽药物合成工艺
针对现有多肽药物合成方法的缺点,发展了相变化多肽 合成法,使用多肽的收敛式合成路线研发出针对 II 型糖尿病的索马 鲁肽和利拉鲁肽;针对骨质疏松的 Abaloparatide、特立帕肽和鲑鱼 降钙素;针对前列腺癌的曲普瑞林、地加瑞克和 PSMA-617;针对特 发性便秘的利那洛肽和普卡那肽;还有比伐卢定、阿托西班、特利加 压素、去氨加压素等多肽药物的全新制备工艺。
兰州大学 2021-01-12
Janus 药物共轭体
目前肿瘤化疗仍是大多数癌症患者不可缺少的治疗方法,但是化疗药物往往缺乏选择性,而且肿瘤细胞容易产生多药耐药性,严重影响化疗的效果。因此,研究可逆转肿瘤多药耐药性的功能性药物输送系统在提高化疗药物药效、降低毒副作用等方面将具有广阔的应用前景。纳米药物载体,如脂质体封装的抗癌药物在临床前和临床实验中已被证实能够通过降低毒性和增强疗效来提高治疗指数。然而,传统脂质体存在载药量低(一般<10%)、稳定性差、药物容易泄漏等问题,导致治疗效果不理想,并且容易引发机体的毒副作用。
北京大学 2021-04-11
放射性药物
放射性药物是可用于诊断或治疗目的的药物,由放射性同位素与有机分子键合组成。有机分子将放射性同位素传递至特定的器官、组织或细胞。 ​ 根据特性选择放射性同位素发射穿透伽马射线的放射性同位素用于诊断(成像),发出的辐射脱离身体后被特定仪器(SPECT / PET相机)检测到。通常,用于成像的同位素产生的辐射在1天后通过放射性衰变和正常的身体排泄完全消除。最常见的用于成像的同位素是:99mTc、I123、I131、Tl201、In111和F18。 ​ 发射短程粒子(α或β)的放射性同位素用于治疗,因为它们能够在非常短的距离内失去所有能量,因此产生大量局部伤害(例如细胞破坏)。该特性用于治疗目的:破坏癌细胞,骨癌或关节炎的姑息治疗中减缓疼痛。这类同位素在体内的停留时间比成像同位素更长;用来提高治疗效率,但仍然限制在几天内。最常见的治疗同位素是:I131、Y90、Rh188和Lu177。 ​ 放射性药物的工作原理是:基于使用分子“出租车”,将受控剂量的放射性活度特异性地传递至目标患病组织(通常是癌细胞),以便根据所用放射性核素的类型可视化(诊断)或治愈(治疗)组织。放射性药物通常包含负责将放射性核素引导至目标组织的生物载体(抗体、肽等)。双功能螯合剂牢固地抓住放射性核素并确保与生物载体之间的牢固结合。
北京先通国际医药科技股份有限公司 2022-02-25
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
一种制备胶体金标记的装载有PD药物的纳米脂质体的方法
本发明公开了一种制备胶体金标记的装载有PD药物的纳米脂质体的方法。将卵磷脂;胆固醇乙醇溶液在特定条件下分散到含胶体金和左旋多巴或金刚烷胺PD治疗药物的PBS溶液中,再将该溶液置于水浴中搅拌,乙醇挥发完全之后适当超声制备而成。所制备的胶体金标记的装载PD药物纳米脂质体粒径小、稳定性好,且有金定位标记,可增加PD药物的稳定性,提高生物利用率,同时减少药物用量,降低毒性。制备方法操作简便,反应易控制。产物可用于研究纳米左旋多巴或金刚烷胺脂质体的给药效果,改善左旋多巴或金刚烷胺的毒副作用,增强脑靶向性,还可作为一种探针用于研究纳米脂质体的脑代谢途径。
河北师范大学 2021-05-03
针对肥胖型的 II 型糖尿病药物 1.1 类化药新药分子 CP0269 的开发
本项目基于 II 型糖尿病热门研究靶点 C-Jun NH2-Terminal Kinase (JNK)的蛋白活性口袋的结构为基础,设计与合成了超过 60 个化 合物的类似物,通过细胞试验筛选和 II 型糖尿病大鼠动物模型验证, 筛选得到候选药物分子 CP0269。该分子与模型对照组和阳性药物二 甲双胍给药组相比,显示出来良好的降血糖,降血脂,保护胰岛 B 细 胞的药效。通过成药性评价预实验显示 CP0269 具有良好的成药性: CP0269 合成与纯化工艺简单,能得到大量,质量可控的原料药;药 物灌胃口服,吸收与起效迅速,长期毒性预实验显示了该化合物具有 良好的安全性。 技术创新点: CP0269 是以 JNK 为靶点设计的抗 II 型糖尿病的药物分子,一旦 开发成功,将成为首次以 JNK 为靶点的抗 II 性糖尿病的药物分子。 属于 First in Class。 市场应用前景: 在当今社会,II 型糖尿病的发病率依然在增长。饮食结构的变化 造成了肥胖人数的增加,肥胖可能导致机体炎症,从而影响胰岛 B 细 胞的存活于机体的胰岛素抵抗。因此,肥胖已经慢慢成为 II 性糖尿病 的发生进展的主要因素之一。针对这种肥胖型 II 型糖尿病的药物,临床上一般采取联合用药的治疗方案。CP0269 一旦开发成功,将会 针对这一日益增长的适应症占据市场,表现出良好的开发前景。 合作方式: 可采用多种方式进行合作,既可与企业联合研发后续工作,也可 通过技术转让方式进行合作,或是其他方式均可。 已获得的知识产权: 一种化合物及其用于制备 II 型糖尿病治疗药物的应用(专利号: 201710941613.9)
南开大学 2021-04-13
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 196 197 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1