高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
情绪健康食品组合
膳食是除遗传外第一大影响健康因素,膳食与营养状况是反映一个国家或地区经济社会发展、卫生保健水平和人口健康素质的重要指标,是国家昌盛、民族富强、人民幸福的重要标志。我国面临营养不足与营养过剩的双重负担,营养相关慢性病仍然呈现上升趋势,严重威胁人民群众生命健康。全球肉类及精制碳水的消费超膳食边界理论值3倍,高脂肪、高能量、低膳食纤维的饮食结构导致我国慢性病人数量迅速上升(超3.5亿),我国居民亚健康总数已经占到总人口的70%以上,肥胖症、高血压和糖尿病患病率分别高达8%、20%和10%,慢病导致的死亡人数已占总死亡人数的86.6%。死亡案例中饮食诱因我国占比达27%。 我国是全球第二大营养与健康食品消费市场,2016年10月25日,国务院正式发布《“健康中国2030”规划纲要》。2017年1月国家发改委与工信部发布的《关于促进食品工业健康发展的指导意见》, 2017年6月30日,国务院办公厅印发《国民营养计划(2017-2030年)》,一系列纲领性文件将“健康中国”上升为国家战略。 随着人民生活水平的提高,广大消费者对食品的需求既要美味,又要健康、还要满足精神心理感受。本实验室以美味好吃+营养健康+积极心理促进为原则,从食品的色、香、味、形、韵、功能成分、文化创意等方面开发情绪健康食品。
北京大学现代农业研究院 2024-12-13
液压组合挂车系列
我公司研发的“泰开”牌系列液压组合模块半挂车是为移动变电站、冶金、化工、建筑及大件物流等部门运送大型、整体不可拆卸的超长、超重货物而设计的重型特种车。主要由车架、液压悬架、转向机构、动力机组、液压系统(含液压转向、液压提升)、制动系统、电控系统、拼车机构、连接梁(平板梁或伸缩梁)、动力鹅颈装置及附属装置等组成。
山东泰开重工机械有限公司 2021-06-23
化学组合实验桌
产品详细介绍
重庆风华现代教育设备有限公司 2021-08-23
埋地换热器地源热泵供热(水)制冷空调技术
项目研究的背景及用途:该项目利用地球表层中较恒定的温度以及储存于地下土壤层中可再生的低品位热能,通过输入少量的高品位能源(如电能),热量实现了从温度低的介质传递到温度高的介质的转移(低温热源向高温热源的转移),可以满足用户全年供暖、制冷空调以及生活热水的需求,从全年的角度,能量可以在一定程度上得到循环回用,具有较强的经济竞争力,是最有希望在供热制冷空调领域发挥重要作用的新技术。地源热泵可以应用在各种建筑物中(独立住宅、集中住宅、学校、工厂、办公楼等商业/公用建筑),可以供暖、供暖+供热水、供暖+制冷空调、供暖+供热水+制冷空调,还可以用于道路融雪、除冰和体育场草坪加热。市场应用范围广泛,国内市场潜力很大。 技术原理及流程:该项目实施可以采用集成埋地换热器、热泵机组、控制系统与建筑末端设备等,从而完成系统工程为目标。因此,其技术核心在于优化各子系统,重点解决地下蓄放热关键技术。成果水平及主要技术指标:该项目经专家鉴定,技术水平为世界先进水平。 市场分析及效益预测:我国的建筑市场巨大,1995~2000 年,每年全国城市新建住宅建筑面积约 2.4 亿 m2,其中上海每年新建约 1500 万 m2,北京约1000 万 m2,天津约 600 万 m2,大连约 260 万 m2。2000~2010 年,每年新建住宅建筑面积约 3.4 亿 m2。这为地源热泵的工程开发应用奠定了极好的市场条件。地源热泵的经济效益可在 3~6 年中从节能中偿还投资,因为与电加热相比可节省三分之二的电能,与燃油锅炉相比亦可节省二分之一的运行费用。而且地源热泵可以大幅度减少常规能源所带来的环境污染,消除燃料燃烧所造成的环境污染。每年完成该方面地源热泵工程 50 项,可实现总产值 5000 万元以上,年净利润 1000 万元。
天津大学 2021-04-11
板带全流程板形综合控制技术
由于影响板形质量的因素较多,且影响因素通常具有非线性、强耦合、遗传性强等特点,板形控制一直是板带轧制领域的难点。随着市场对板形质量要求的不断提高,板形控制的含义不断丰富。基于二十年的研究实践,开发出了全套板形自动控制系统和多类辊形技术,并率先提出了全流程板形控制的概念,形成了成套板形综合控制技术。自主研发的成套板形综合控制技术主要包括:1)轧辊辊形技术:包括变接触支持辊辊形(VCR,VCR+),高性能变凸度工作辊辊形(HVC),非对称锥形工作辊(ATR),中部变凸度工作辊辊形(MVC),边部变凸度工作辊辊形(EVC)等,轧辊辊形技术提高了轧机的板形控制能力,满足了不同类型的板形控制需求;2)全套板形控制系统(PFEC):包括过程控制级的板形设定计算模型、板形自学习模型和基础自动化级的平坦度反馈控制模型、凸度反馈控制模型、弯辊力前馈控制模型、板形板厚解耦模型及轧后冷却平坦度补偿模型等,实现了高精度的板形自动控制;3)全流程板形综合控制技术:包括高品质用钢的起筋控制技术,硅钢全流程板形控制技术、板形质量异议综合解决方案,轧后板带内应力减量化技术等,解决了多类板形质量缺陷。
北京科技大学 2021-04-13
一种绝缘栅双极型晶体管及其制造方法
提供一种绝缘栅双极型晶体管(IGBT)及其制备方法,该IGBT包括N型基区、P型基区(28)、背P+阳极区(21)、N+阴极区(26)、栅氧化层(24)、阳极(20)、栅电极(25)和阴极(27),所述的N型基区由依次层叠的N+扩散残留层(29)、N-基区(23)和N+缓冲层(22)组成,所述的N+扩散残留层(29)和N+缓冲层(22)从与N-基区(23)的边界起始向外掺杂浓度逐渐增加。IGBT在N-基区(23)正面设置N+扩散残留层(29),提高了N型正面的离子掺杂浓度,降低了结型场效应晶体管(JEFT)电阻的影响,从而有效降低IGBT的导通压降,同时对IGBT的正向阻断电压(耐压)的影响降低到最小。
浙江大学 2021-04-13
任选燃料混合式发动机
集四行程、三角转子和燃气轮机多重优点,去除压缩、 暴发两行程配气机构,改为进气做功、排出废气配气机构,并具有更高增压的三角转子废气增压装置,故不但克服了该发动机不均匀运转问题和在限定时间里燃烧、使用单一燃料局限性问题,而且还克服了燃气轮机热效率极底的问题;尤其在该发动机中,应用了微电脑控制变速电机的大转矩行星齿轮配气机构和空心球状转换阀,所以该发动机,还能替代 变速器而提供多种动力输出和提供该发动机反向旋转的多种动力输出。四缸总量为 2.0L, 烟度不透光度 20 秒怠速≦10%,功率为 240KW 以上,节能减排 50%以上,抗电磁干扰为 0-30khz。
太原理工大学 2021-05-06
多通道复合式直线振动传输系统
本发明公开了一种多通道复合式直线振动传输系统,涉及到基于圆饼状零件的姿态调整和上料装置。该传输系统以现有的机械手和圆饼状零件加工生产线为基础,针对圆饼状零件开发出一套自动化姿态调整和上料的装置。圆饼状零件可包括螺母、减速器的衬套和弹簧座等,这类零件在上料前需要全部以一正确的姿态送入以便加工。该系统包括升降机构、料仓、振动给料机、光电开关组件、翻转和平移机械手,对机械手和辅助设备协同动作控制系统的研发,实现机械手和辅助设备的同步动作,方便机械手对零件的调整和摆放。与现有技术相比,本发明可降低生产成本、实现圆饼状零件的并行快速排列,解决加工过程中零件排序困难的问题,取代人工排列的工作方式。
东南大学 2021-04-11
复合式锚杆桩地基加固技术
建筑物基础的沉降与失稳一直是困扰工程界的重大技术难题,长期得不到有效解决,此类问题一般都是采用工程桩、树根桩、搅拌桩等常规手段加以处治,但其工艺复杂、效果一般且造价高。从 1998 年起,本项目组结合具体的工程,从设计入手,创造性地提出了一项加固沉降基础的有效技术——复合式锚杆桩地基加固技术,该项技术将传统意义上的锚杆垂直布置形成群桩效应,取代了昂贵的工程桩并获得更好的工程效果。
北京科技大学 2021-04-13
复合式锚杆桩地基加固技术
建筑物基础的沉降与失稳一直是困扰工程界的重大技术难题,长期得不到有效解决,此类问题一般都是采用工程桩、树根桩、搅拌桩等常规手段加以处治,但其工艺复杂、效果一般且造价高。从1998年起,本项目组结合具体的工程,从设计入手,创造性地提出了一项加固沉降基础的有效技术——复合式锚杆桩地基加固技术,该项技术将传统意义上的锚杆垂直布置形成群桩效应,取代了昂贵的工程桩并获得更好的工程效果。 (1)1999年,利用该技术设计并组织施工完成了京沪高速公路(化-临段)NO.4合同段沉陷路基的加固工程。 (2)2000年,利用该技术设计并组织施工完成了洛阳-三门峡高速公路NO.6合同段王庄大桥基础加固工程。 (3)2001年,利用该技术设计并组织施工完成了洛阳-三门峡高速公路NO.6合同段沉陷路基的加固工程。 (4)2001年,利用该技术设计并组织施工完成了普尔斯马特会员商店广东星宝分店营业大厅地坪加固工程。以上所取得的技术成果将在2002年鉴定。 (5)2006年,成功应用于北京地铁10线国贸站原有立交桥桥基隔离加固工程。 应用范围:本项目所取得的成果应用范围十分广泛,其核心技术可应用于铁路、公路、矿山等几乎所有与岩土有关的工程领域。
北京科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 71 72 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1