高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
自蔓延复合钢管制备技术
自蔓延高温合成(Self-propagating High-temperature Synthesis, 缩写SHS)是利用化学反应自身放热制备材料的新技术。目前已发展成为一个介于燃烧科学与材料科学之间的新学科,用自蔓延技术合成的材料达上千种,它的突出优点是设备简单、工序少、合成速度快、成本低,尤其适用于高温难熔材料的合成。 本项目涉及的SHS陶瓷内衬复合钢管、不锈钢及耐蚀合金内衬复合钢管、耐腐蚀聚合物内衬复合钢管、小口径陶瓷内衬复合弯管均已达到工业化生产的程度,广泛应用于冶金、矿山领域;煤炭和电力工业领域;石油、化工工业、水处理工业领域; 建材工业、运输工业领域;粮食、食品工业、饲料加工业和医药工业领域。 SHS陶瓷内衬复合钢管:SHS-离心法与传统工艺(热喷涂法、等离子喷涂、热装法、爆炸法等)比较有明显的优点:成本低、内衬陶瓷层与钢管结合紧密、制备的复合钢管长度较长(可达5.5米)。已广泛应用于矿山尾矿输送,电厂煤粉和除灰管道等工业领域。 不锈钢及耐蚀合金内衬复合钢管:SHS-离心法制备超低碳不锈钢,避免钢中析出碳化物,因此可防止由于碳化物析出造成的晶界附近贫铬,从而提高不锈钢内衬层的抗晶间腐蚀性能,内衬层可与外层钢管实现牢固的冶金结合。可代替整体不锈钢管,其成本是整体不锈钢管的1/3,在冶金、石油、化工等领域有广泛的应用前景。 耐腐蚀聚合物内衬复合钢管:该复合钢管由三层组成,最里层是聚合物,中间层是氧化铝陶瓷,最外层是碳钢。聚合物内衬层厚度为0.5~1.0mm,最高使用温度是120℃。由于聚合物内衬层与氧化铝陶瓷过渡层之间结合强度高以及内衬层表面光滑,因此该产品具有内衬层不易脱落和输送介质时阻力较小等优点。该产品具有优良的耐腐蚀和耐磨性能,与普通聚合物管相比,不易老化,可承受更高的压力,输送热水时不易结垢,可广泛用于石油、化工、食品、冶金和矿山等行业。例如,在化工行业用于高腐蚀性介质的输送,取代钢管和铸铁管用于输水管道,还可代替水泥管用于污水处理系统。小口径陶瓷内衬复合弯管:该工艺弥补了离心法只适合制备直的规则形状管状样品的不足,即可制备等径的弯管,又可制备变径的直管和弯管。陶瓷内衬弯管的内衬层是Al2O3陶瓷、Al2O3-ZrO2、Al2O3-Cr2O3复合陶瓷,内衬陶瓷层具有优异的耐高温氧化、耐磨和耐高温腐蚀性能,在冶金、化工等工业领域有广泛的应用前景。该种复合钢管用作高炉喷煤枪已经在国内几家大型钢铁企业获得成功应用。
北京航空航天大学 2021-04-13
轻质木塑复合板成型技术
轻质木塑复合板是以聚烯烃、聚氯乙烯、苯乙烯系等热塑性塑料为基体,添加30%-50%木屑或农作物纤维及适当的添加剂,用压制方法制成的密度为0.9-0.6g/m3的耐水、耐霉菌、具有木材加工性和外观的材料。适用于作为周转箱、托盘、路板、隔板、货架、货柜、室内外隔板、家具板等材料。轻质木塑复合板材厚度1-20mm,最大成型面积1m×2m。轻质木塑复合板成型技术是专利技术,包括成型装备与模具设计、原料配方及加工工艺控制技术。
四川大学 2021-04-14
金属/陶瓷复合防护板制备技术
金属/陶瓷复合防护材料或结构,主要有结构可靠性、重量和成本等方面的考虑,可应用于车辆(如装甲车和运钞车)、船舶舰艇和武器直升机等防弹或防爆场合。金属/陶瓷复合防护板制备方法主要包括胶粘、机械固定和各种热加工工艺(如铸造、热压等)。目前,金属/陶瓷复合防护板主要包括层叠复合、陶瓷增强金属匀质复合、梯度复合、侧向约束和三维约束等基本类型。金属封装陶瓷复合防护板是一类具有有效三维陶瓷约束,良好的金属/陶瓷界面冶金结合特征的新型陶瓷复合防护板,它特别具有优良的抗冲击、抗崩落和抗多次打击能力。
江苏大学 2021-04-14
温控缓释抗寒型种衣剂及抗寒剂制备方法
本发明提供一种温控缓释抗寒型种衣剂,由温控缓释抗寒剂和包衣辅料组成,所述的温控缓释抗寒剂由温控缓释材料和水杨酸组成,所述的温控缓释材料为N-异丙基丙烯酰胺与甲基丙烯酸丁酯的无规共聚物,所述的抗寒剂与包衣辅料的质量比为0.0015~0.03:1。本发明还提供了温控缓释抗寒剂的制备方法。本发明提供的温控缓释抗寒型种衣剂能够发挥温控缓释材料的温控作用,使其控制抗寒剂在特定的温度下释放,以保证抗寒剂的有效作用充分发挥,同时也可节约成本,减少环境污染。
浙江大学 2021-04-11
一种缓释烟用香料微胶囊的制备方法
本发明提供一种缓释烟用香料微胶囊制备方法,该微胶囊主要由改性多孔淀粉与密封材料组成。本发明涉及的微胶囊解决了烟用香料直接加入配方后易挥发、稳定性差等的缺点,对烟用香料达到缓释作用。本发明采用的多孔淀粉为改性多孔淀粉,引入疏水基团提高其吸附疏水性物质的能力,从而拓展其应用范围,且用密封材料对其表面进行包裹。该微胶囊可利用密封材料的粘合性固定在外层卷烟纸中,且可以进行接缝、包装、印刷商标等。
东南大学 2021-04-11
两性霉素 B 缓释微球及其制备方法
两性霉素 B 是大环多烯类抗生素,能与真菌细胞膜选择性结合,导致胞内物质外漏 而致死。但由于其毒性较大且难以通过血脑屏障,因此提高包裹率和降低毒性是提高疗 效的必要条件。为控制药物的释放速度,减少血药水平的峰与谷,降低全身药物水平, 可以利用生物降解材料作为药物载体。 本发明在于提出一种两性霉素 B 缓释微球及其制备方法。药物载体为可生物降解的 聚合物,得到的缓释微球粒径为 120nm 以下,稳定释放 80 小时以上,聚合物重均分子 量 5000-50000。制备方法为:油相为可生物降解的聚合物和两性霉素 B 溶解与共溶剂的 丙酮溶液,水相为加入乳化剂的蒸馏水、生理盐水或 5%葡萄糖注射液的一种将油相加 入水相中,搅拌,自然挥发除去丙酮,透析后冻干成粉,即得所需药品。
同济大学 2021-04-13
液压无级转向技术和液压复合无级转向技术
Ø  成果简介:从履带车辆的无级转向技术的发展来看,液压无级及液压复合无级转向是上世纪70至80年代发展的具有代表性的新技术。世界各国发展的新型和改进型军用履带车辆的传动装置上,几乎全部采用了这类新型的无级转向机构。在民用工程车辆上也逐渐开始采用。可实现履带车辆无级转向功能。主要技术指标是:车辆吨位:10~50t;可匹配的发动机功率范围:50~600kW;输入转速范围:2000~3000r/min;传动效率:90%~93%。Ø  项目来源:自行开
北京理工大学 2021-01-12
液压无级转向技术和液压复合无级转向技术
从履带车辆的无级转向技术的发展来看,液压无级及液压复合无级转向是上世纪70至80年代发展的具有代表性的新技术。世界各国发展的新型和改进型军用履带车辆的传动装置上,几乎全部采用了这类新型的无级转向机构。在民用工程车辆上也逐渐开始采用。 可实现履带车辆无级转向功能。 主要技术指标是: 车辆吨位:10~50吨;可匹配的发动机功率范围:50~600kW;输入转速范围:2000~3000r/min;传动效率:90%~93%。
北京理工大学 2021-04-13
一种油溶性药物缓释微球的制备方法
高分子材料越来越多地用于生物医药与药学领域,其中尤其以能被可生物降解高分 子材料应用最为广泛,研究发展很快。非诺贝特是一种氯贝丁酯类降脂药,其化学名称 为:2-甲基-2-[4-(4-氯苯甲酰基)苯氧基]丙酸异丙酯,长期用药可导致蓄积,有必要 提高其生物利用度,达到缓慢释放。目前对于非诺贝特微球地制备未见报道,常用剂型 存在暴释现象,有必要研制缓释制剂。 本发明地目的是提供缓释微球的制备方法,使药物稳定释放。制备方法为:水相采 用聚乙烯醇水溶液或聚乙二醇水溶液或蒸馏水,油相采用聚乳酸-聚乙二醇共聚物和药 物丙酮溶液,将油相加入水相中,自然挥发除去丙酮,再进行透析除去未包封的药物以 获得油溶性药物缓释微球。 功能特点: 1、制备操作简单,以丙酮/水作为油水二相体系,以获得稳定的药物缓释微球。 2、微球无粘连,释放稳定性优于非诺贝特原药和胶囊。 3、加以衍生可以满足更多脂溶性药物的使用要求。
同济大学 2021-04-13
木塑复合材料注塑成型技术
木塑复合材料(WPC)兼有木材成本低和塑料性能佳的优点,目前大多采用挤出或模压法进行加工。而采用注塑成型,其优点是生产速度快、效率高、易实现自动化生产,且能成型形状复杂的制品。 本项目针对聚烯烃(聚乙烯、聚丙烯)基木塑复合材料的流变特性,通过设备改进和合理的配方工艺设计,实现了PP/木粉、PE/木粉的注塑成型,可得到具有良好外观和优良物理机械性能的木塑复合制品。将PP(或PE)树脂与干燥后的木粉、添加剂混合均匀后挤出造粒,然后通过经改进的注塑机进行注塑成型,可生产包装盒、花盆、像框、笔筒、汽车邮箱盖等各种形状制品(可进一步实现仿红木等仿木效果),在某些场合可替代纯塑料或纯木制品,降低产品成本。技术指标是PP基木塑复合材料注塑,木粉净含量可达30-50%。应用范围为可生产木塑复合材料注塑制品,如:包装盒、花盆、像框、笔筒、衣架、眼镜盒、花盆、鞋楦、工具手柄、果盘、雨伞手柄、汽车邮箱盖等。通过添加木粉,可降低产品成本,增加产品木质感。提供专用注塑机(或设备改进)及配方工艺技术,其他设备包括高速混合机、双螺杆造粒挤出机、模具为用户自购。通过添加木粉,可使产品在纯塑料的基础上降低15-30%。
北京化工大学 2021-02-01
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 767 768 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1