高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高级全功能老年护理人模型(男性)
XM-HL7高级全功能老年护理人模型(男性) (无血压测量功能)   XM-HL7高级全功能老年护理人模型是根据老年人生理特征,专为临床护理培训操作与实际要求而设计,综合了基础护理与外科护理的主要功能,全套模型由全身老年模拟人和无创血压测量模拟器组成,有近50项护理功能,模型由高分子材料制成,具有形象逼真、操作真实、拆装方便、经久耐用等特点,还可以拆装分部件进行局部功能教学训练,可让护理工作者在老年护理过程中,更多理解和关爱老年人。   功能特点: ■ 四肢关节灵活度逼真,可模拟关节僵硬,躯干部可前倾,可坐轮椅。 · 躯干:屈伸 · 颈部:屈伸、侧转 · 肩部和髋部:内收、外展、屈伸 · 肘部:旋内、旋外、屈伸 · 膝部:屈伸 · 腕部:屈伸 · 踝部:旋内、旋外、背屈、跖屈 ■ 可实现多种体位:去枕平卧位、屈膝仰卧位、半坐卧位、端坐位、俯卧位、头低足高位、头高足低位、侧卧位、截石位、昏迷体位等,满足操作需要。 ■ 可进行床上擦浴及更衣,扶助病人移向床头法、轮椅使用法、平车运送法、担架运送法等移动和搬运病人法、轴线翻身法,肢体约束法、肩部约束法、全身约束法等操作。 ■ 脸部清洁:面部皮肤可擦拭清洁。 ■ 瞳孔观察示教:一侧瞳孔散大、一侧瞳孔正常。 ■ 耳部护理:可进行耳廓、外耳道的清洗、助听器取出和插入。 ■ 口腔护理: 可进行正常口腔及牙齿护理。 ■ 口鼻气管插管时,支持听诊检测插管位置。 ■ 可进行气管切开术后护理。 ■ 可进行吸痰术练习。 ■ 氧气吸入法:鼻孔内可插入吸氧管,练习氧气吸入的操作过程。 ■ 雾化吸入疗法:可练习雾化吸入的操作过程。 ■ 鼻饲术:托起头部使下颌靠近胸骨柄实现昏迷病人的鼻饲,具有真实大小的胃,可容纳250ml的液体,胃管插入45-55cm时,可以抽出模拟胃液。 ■ 洗胃术:可经口、鼻进行洗胃器洗胃、电动吸引器洗胃、胃管洗胃、洗胃机洗胃,胃容量约为200ml。 ■ 手臂静脉穿刺、注射、输液(血):可使用不同类型的穿刺针,正确穿刺时落空感明显并有回血产生,可进行静脉输液(血)练习,静脉血管和皮肤均可更换,操作方便,经济实用。 ■ 上臂三角肌皮下注射:可注入真实液体,注射模块可取下清洗,并可更换。 ■ 臀部肌肉注射:可注入真实液体,注射模块可取下清洗,并可更换。 ■ 股外侧肌肉注射:可注入真实液体,注射模块可取下清洗,并可更换。 ■ 胸腔、骨髓、腰椎穿刺 ■ 男性导尿术:可取仰卧屈膝位,两腿外展后可独立支撑,男性阴茎可提起与腹壁成60度角,插管时可真实感受男性尿道的三个狭窄、两个弯曲,操作成功后可导出模拟尿液。 ■ 留置尿管和膀胱冲洗术。 ■ 男性前列腺检查,有包皮。 ■ 造瘘口护理:腹壁有回肠造瘘口和结肠造瘘口,内连集液瓶,可进行造瘘口护理。 ■ 灌肠操作训练:可实现大量不保留灌肠、小量不保留灌肠、清洁灌肠和保留灌肠等多种灌肠方式。 ■ 大面积骶骨位置溃烂。 ■ 癌症肿块的对比。 ■ 皮褶皱对比。 ■ 可练习手指、足趾的包扎。 ■ 其他护理操作:冷热疗法护理、外阴擦洗、外阴湿热敷、尿道冲洗、床上擦浴、座式擦浴、穿换衣服等多项护理操作。
上海欣曼科教设备有限公司 2021-08-23
XM-527成人纵膈模型
XM-527成人纵膈模型   XM-527成人纵膈模型从左面看显示心包、主动脉弓、胸主动脉、胸导管等;右面观显示心包、食道、上下腔静脉、奇静脉等;纵膈两侧均有胸腺、支气管、肺动静脉、膈神经、迷走神经、胸廓内动静脉等,胸廓后壁示肋间动静脉、肋间神经、交感神经干等。 尺寸:自然大,50×26×16cm 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
基于机器视觉的智能拉力试验机
一、 项目简介通过机器视觉进行电缆护套拉伸长度测量,用于“电线电缆”产品检验设备,通过数字图像处理技术测量电缆护套上两个标志点之间的长度,来分析电线电缆绝缘层材料的抗张强度和断裂伸长率。该检测装置无需人工干预,可自动完成电缆护套试件拉伸长度的测量,检测过程中样品无接触压痕,可实现5个实验样本一次装卡,同时作拉伸长度检测试验,并进行智能数据分析,缩短了试验时间,极大地提高了实验效率和检测精度。二、 项目技术成熟程度已完成样机研制,获专利1项。三、 技术指标(包括鉴定、知识产权专利、获奖等情况)1、最大试验力:500N ;     2、测力示值准确度:≤±1.0%;3、试验速度范围:10-500mm/min; 4、速度示值准确度:≤±1mm;5、移动台最大位移:600mm ;  6、位移示值准确度:≤±1mm。四、 市场前景(应用领域、市场分析等)产品可用于电材生产及相关质检部门,目前国内无类似产品,属国内首创,市场前景看好。五、 规模与投资需求(资金需求、场地规模、人员等需求)机械部分可以自行加工或外协加工,计算机电控部分组装与调试需2~3人。除机械部分外,厂房40平方米左右即可。规模生产需要流动资金100万左右。六、 效益分析 按每年生产200台计算,可获利约1500-2000万,七、 合作方式 技术入股,技术转让等形式。或面谈。八、 项目具体联系人及联系方式(包括电子邮箱)项目负责及联系人:高振斌,电话:022-60436758邮箱:gaozhenbin@hebut.edu.cn九、高清成果图片2-3张  
河北工业大学 2021-04-11
在量子物理与机器学习研究的进展
生成模型的研究重点是如何从给定的数据集合中学习到数据的联合概率分布,以及从学习到的概率分布中高效地生成新的样本。研究团队提出将数据的联合分布概率编码成量子多体态的概率幅的模平方。进一步地,他们提出在经典计算机上使用矩阵乘积态(Matrix Product States)来模拟学习的过程。矩阵乘积态的参数,即张量网络的张量元,可以通过类似密度矩阵重整化群(Density Matrix Renormalization Group)的算法进行学习,最终形成一个具有泛化能力的生成模型。这个学习算法结合了量子物理与机器学习各自的优点:它不仅可以利用GPU高效地学习到模型参数,还可以利用张量网络的灵活性动态地调节模型表达能力。此外,与传统的基于统计物理的生成模型(例如玻尔兹曼机)相比,玻恩学习机还具备直接生成无关联样本的强大能力,从而可以高效地生成新的数据。 基于量子态的概率生成模型融合了量子物理与机器学习的思想,是一个崭新的研究领域。玻恩学习机借助量子态内禀的概率解释及其强大的表达能力,意在为机器学习和人工智能提供更为先进的生成模型和学习算法。此外,这类模型在量子信息处理,量子计算以及多体物理中具有应用潜力。展望将来,最令人兴奋的前景应该会是在一台量子计算机上实现玻恩学习机,从而以全新的方法进行概率型的学习和建模。这项工作用使用张量网络模拟量子计算机的运行,向无监督量子机器学习迈近了一步。作用在一幅MNIST图片上的矩阵乘积态以及它的纠缠谱
北京大学 2021-04-11
机器视觉系统应用实训平台(初级)
深圳市越疆科技有限公司 2022-06-14
机器视觉系统应用实训平台(中级)
深圳市越疆科技有限公司 2022-06-14
机器视觉系统应用实训平台(高级)
深圳市越疆科技有限公司 2022-06-14
MXY9003 机器视觉综合实训平台
一、产品介绍 机器视觉技术综合了光学、电子、机械、计算机软硬件等方面技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。机器视觉方法检测具有非接触、速度快、精度高等优点,特别适用于在线的工业品检测。线阵CCD、面阵CCD和CMOS都在本实验仪中都得到利用,可以充分挖掘学生的潜能,拓宽学生的知识面。可开设光电、测控、机械、自动化专业的本科实验教学课程,也可做为相关高职专业学生的实训课程。 二、实验内容 1、根据不同待测物的特征,分析适用的照明方式: 2、利用线阵CCD相机对物体的尺寸测量实验; 3、利用线阵CCD相机对物体的角度测量实验; 4、利用线阵CCD相机对物体扫描实验; 5、面阵CCD和CMOS相机用于边缘与轮廓检测实验; 6、面阵CCD和CMOS相机颜色识别与变换实验; 7、面阵CCD和CMOS相机对物体尺寸测量实验; 8、面阵CCD和CMOS相机对投影与差影图像分析实验; 三、配套文件资料  1、实验指导书1本;  2、实验软件1套;    客户自行配置电脑       
天津梦祥原科技有限公司 2021-12-17
基于机器视觉的路面病害检测关键技术
路面病害分为表面破损(如裂缝)、路面变形(如沉降)和结构病害(如层间脱空)三大类。该技术以路面检测成果为全卷积神经网络的输入信号,对于表面破损,其输入为多功能检测车拍摄的路表图像;对于路面变形,输入为三维检测车测取的三维路面模型;对于结构病害,输入为探地雷达信号图像。通过海量数据的训练、测试,可实现上述三类病害的自动化识别、分类和测量,为路面养护工程提供数据支撑。此外,该技术在保证与人工识别结果相同的精度下,可将数据处理速度提高千倍以上。 
华东交通大学 2021-05-04
关于蛋白质机器动力学的研究
泛素-蛋白酶体体系(Ubiquitin-Proteasome System,简称UPS)是细胞内最重要的蛋白质降解通路,对维持生物体内蛋白质的浓度平衡,以及对调控蛋白、错误折叠或受到损伤的蛋白的快速降解起着至关重要的作用,参与了细胞周期、基因表达调控等多种细胞进程,由UPS失常引发的蛋白质新陈代谢异常与众多人类重大疾病直接相关。2004年,Aaron Ciechanover, Irwin Rose和Avram Hershko三位科学家被授予了诺贝尔化学奖,以表彰他们对该降解通路的发现。UPS中蛋白酶体是细胞中最基本的、最重要的不可或缺的、最为复杂的大型全酶超分子复合机器之一,人源蛋白酶体全酶包含至少33种不同的亚基,总原子质量约为2.5MDa。美国FDA批准的多种治疗癌症的药物分子即以蛋白酶体为直接靶标。近年来,随着冷冻电镜技术的发展和应用,人们对这一大分子机器的结构和功能研究得以不断深入。2016年,毛有东课题组与合作者报道了人源蛋白酶体基态的3.6Å冷冻电镜结构及其他三个亚纳米分辨构象,并首次发现一个亚稳态构象的核心颗粒(Core Particle,简称CP)底物转运通道处于开放状态(见PNAS 2016, 113: 12991-12996)。2018年4月,该课题组又报道了6个ATPγS结合状态下的26S动态结构,包括三个CP开放态对应的亚稳简并态近原子分辨(4~5Å)结构(见Nature Communications 2018, 9: 1360)。尽管这些工作揭示了蛋白酶体的基本架构和内在运动行为,但由于缺乏蛋白酶体与底物之间的相互作用,人们对于蛋白酶体如何实现底物降解的原子水平工作机制仍一无所知。此外,尽管冷冻电镜技术近年来广泛应用于分析具有动态特征的蛋白复合体结构和平衡态构象,但对其中间态结构和非平衡构象分析的分辨率水平往往局限在4~6埃或更低,离真正的全原子水平动力学分析还有相当一段距离。 为了真正实现原子水平的蛋白酶体底物降解动态过程的冷冻电镜三维重建和动力学表征,毛有东课题组攻克了两大技术难题。其一,如何在蛋白酶体完成底物降解之前抓到它的所有可能的中间态构象?课题组发展了一种新颖的核酸置换法,利用ATPγS降低AAA-ATPase激酶水解活性的特点,在底物降解中间过程,通过将ATP快速置换成ATPγS,结合快速冷冻的优势,从而扑捉到蛋白酶体在底物降解过程的中间态。其二,如何在从冷冻电镜数据中分析出更多构象的同时,还把分辨率做到3埃甚至更好?课题组通过多年持续努力,发展了多种基于人工智能和机器学习的冷冻电镜图像聚类的新型算法,并针对蛋白酶体的动力学特征,设计了一套极其有效的整合了多种算法的多构象分类流程。通过这两套技术方案的完美结合,课题组成功解析了人源蛋白酶体在降解底物过程中的七种不同的、但差别甚微的、高分辨原子水平的天然态构象(Native states),完整展示了蛋白酶体从泛素结合到去泛素化,再到底物转运的动态过程。与同期在Science上发表的与底物结合的酵母蛋白酶体的4.2-4.7埃冷冻电镜结构(Science doi: 10.1126/science.aav0725,来自加州伯克利分校和Scripps研究所)相比,该Nature论文不仅总构象数量多一倍,全部构象分辨率还高1-2埃。由于Science论文采用了抑制Rpn11去泛素活性的策略,其非天然态结构中底物并不能真正自由转运,所推测的机理仅限于底物转运这一步,对于其他三大Nature论文所回答重要问题均无法给出答案。这体现了该Nature论文不仅在实验方法的原创性上和数据分析水平和质量上,更在科学发现和问题探究的深度和广度上大幅超越了来自Science的竞争性论文。图一 七个利用冷冻电镜解析的精细原子结构完整揭示了从泛素识别、去泛素化反应、转运启动和持续降解的核心功能动态过程。 作为整个蛋白酶体的动力来源与运转核心,AAA-ATPase激酶分子马达展现出了三种不同的核苷酸水解协作模式,6个ATPase亚基协调工作,交替与底物发生相互作用。在去泛素化过程(EB态)中,处于对立位置的两个ATPase亚基Rpt2与Rpt4水解ATP,而Rpt5与Rpt6则释放ADP,ATPase内的底物转运通道被打开,使得底物可以进入轴心通道;与此同时,去泛素化酶Rpn11亚基与泛素及底物发生相互作用,执行其作为去泛素化酶的功能;在转运起始过程(EC态)中,相邻的两个ATPase亚基Rpt1与Rpt5会同时水解ATP,调控颗粒(Regulatory Particle,简称RP)发生大规模转动并释放泛素;在底物去折叠与转运过程(ED态)中,三个相邻的ATPase亚基会分别同步进行ATP的结合、ADP的释放与ATP的水解,这一过程会单向传递下去,将ATP水解释放的化学能转换为机械能,使得相应的ATPase亚基发生刚体转动,推动底物的去折叠和单向输运,同时CP的转运通道入口打开,底物被送入通道中进行降解。这些研究结果为几十年来对蛋白酶体功能的研究提供了宝贵的第一手原子结构和动力学信息,对于理解生物体内蛋白质的降解过程和一系列负责物质输运的ATPase马达分子的一般工作原理具有极为重要的科学意义。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 84 85 86
  • ...
  • 103 104 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1