高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
动力系统控制及能量管理技术
01. 成果简介 质子交换膜燃料电池系统具有污染低,排放少,高比功率等优点,在汽车上有着越来越广泛的应用。燃料电池汽车一般包含两个动力源,即燃料电池和动力电池,如何实现两个动力源间最优的功率分配,提高能量利用率和使燃料电池大部分工作在稳态工况下,提高燃料电池的使用寿命,是动力系统控制和能量管理的重点。 针对动力系统控制,提出了一种燃料电池混合动力整车控制方法和基于多信息融合的整车控制方法等。整车控制器通过实施读取车辆状态参数,预测整车需求功率,根据动力电池SOC状态,计算预测未来一段时间内动力电池的目标最优SOC轨迹,同时计算整车的辅助功率等,实现整车目标功率在动力电池和燃料电池之间的优化分配。 针对能量管理,提出了一种燃料电池汽车的热管理系统和基于地理位置信息的能量管理方法等。新型热管理系统采用水冷方式控制燃料电池工作在合适的温度,利用燃料电池工作时产生的热量以及辅助电加热器产生的热量,用于车辆冬季取暖,同时用于锂离子电池在冬季的保温。基于地理位置信息的能量管理方法将车辆的地理位置信息与车辆的功率需求结合起来,通过多时间尺度的通讯,融合马尔可夫模型和动态规划算法,实现了工况预测和最优的能量管理。 同时还针对燃料电池等混合动力汽车,提出了多种网络通讯方法和通讯网络测试系统。提出了基于有限状态机的分布式控制系统、基于时间出发的分布式控制系统CAN网络通讯方法和基于TTCAN的整车通讯网络测试系统等。简化了控制流程设计,通过确立系统节点间信息交互模式可方便的规划各节点间的协同工作,避免网络仲裁和冲突,提高网络安全的实时性和安全性。02. 应用前景 本成果可应用于质子交换膜燃料电池领域。03. 知识产权 本成果涉及10项发明专利。04. 团队介绍 项目团队主要研究方向新能源汽车动力系统,团队成员包括欧阳明高、李建秋、杨福源、王贺武、卢兰光、李希浩、徐梁飞、杜玖玉、韩雪冰、冯旭宁等,课题负责人为李建秋,获得国家技术发明二等奖两项,北京市科学技术一等奖一项、中国汽车工业技术发明一等奖一项,论文发表200余篇。项目团队深度参与了中国新能源汽车的战略规划、科技研发、国际合作、示范考核和产业化推进的全过程,培育出多家学生创业型高科技企业,为中国新能源汽车跻身世界先进行列作出了重要贡献。05. 合作方式 技术许可。06.联系方式 邮箱: zhangyan2017@tsinghua.edu.cn
清华大学 2021-04-13
基于大数据的能源互联网能量管理系统
随着电网数据规模越来越大,所蕴含的价值也越来越多。清华大学信研院研发了基于机器学习方法的能源互联网能量管理系统,主要功能为对电网的稳定性进行预测和可视化。系 统分为训练部分和预测部分。训练部分通过历史数据进行机器学习,建立一个电压稳定性的 分类器。分类器训练完成后,再对新增的未知数据进行预测。训练部分主要分为特征提取、 类别标记、特征压缩、分类器类型选择。预测部分主要分为分类器数据启动阶段和预测输出 阶段。本系统提出利用机器学习方法对电网电压稳定性进行预测,进一步综合多个节点给出 电网态势感知的评估结果。在训练每一个节点分类器的时候,本系统将特征选取的时段和预 测时间节点拉开,形成一种延时的预测方法,本发明对复杂系统有着更好的还原效果。2 应用说明本系统实施电压稳定性预测的具体步骤为:步骤 1:通过部署在关键测点的同步相角测量单元 PMU 采集电网实时数据,所述 实时数据包含电网中每个关键测点的电压 U、 有功 P、无功 Q、电流 I;分别计算 U 的衍 生量 dU/dt,Q 的衍生量 dQ/dt,电压的变化 量比上无功的变化量的衍生量 dU/dQ,用这 些衍生量作为特征,来表征量的时间变化速 率;步骤 2:对步骤 1 中提取的特征进行数 据降维与压缩;根据特定时刻电压 U 是否恢 复到标准值的 0.8 倍来区分每组样本组是否 稳定,用 0 标记稳定,用 1 标记不稳定;步骤 3:选择分类器,建立一个电压稳 定性的分类器;步骤 4:训练分类器;当分类器训练完 成后,将训练好的参数储存起来;步骤 5:进入预测部分的数据启动阶段, 填充特征矩阵,没有输出;步骤 6:把多个节点的特征按照顺序排列,形成特征矩阵;特征矩阵填充完成后, 根据分类器给出的预测结果;特征时段向前滑动,最初的特征被抛弃,新特征补充在队尾, 分类器持续给出预测结果;步骤 7:每隔一定时间间隔 ,要把新收集来的数据与以前的数据一起,重新回到步骤 4 训练分类器,更新参数。在具体系统搭建过程中,我们充分利用现有机器学习平台。其中 Hadoop 的文件管理系统 HDFS 负责数据存储;Spark 负责模型训练;Storm 负责在线预测;Kafka 负责在 Storm 和Hadoop 之间传递更新后的模型参数。
清华大学 2021-04-11
一种光伏储能系统能量管理控制方法
本发明公开了一种光伏储能系统能量管理控制方法,包括光伏 储能系统配置方法、集中储能系统控制方法和分布式储能系统控制方 法。相比于传统混合储能结构,本发明采用集中储能与分布式储能分 层控制方式,能够方便、有效地对光伏储能系统进行全局控制和局部 控制,简化控制电路及控制过程,提高控制效率;通过集中储能和分 布式储能控制方法的优化,可有效增加光伏利用率,稳定母线电压; 通过蓄电池分组控制方式,解决了采用单一控制时,数据量大、难以 合理确定每台蓄电池荷电状态的问题。本发明可广泛用于分布式光伏 储能系统,简化
华中科技大学 2021-04-14
51009能量、能量的转化和转移
宁波华茂文教股份有限公司 2021-08-23
能量守恒
宁波华茂文教股份有限公司 2021-08-23
一种混合动力公交车在线自学习能量管理方法
本发明公开了一种混合动力公交车在线自学习能量管理方法,该方法首先根据出厂时设置的初始能量管理策略控制发动机和电动机的转矩分配,随着公交车在固定路线上的运行,获得初始策略对应的动作值函数后,可以从该动作值函数出发,通过公交车在道路上的往复运行,在线、自主地学习适合于公交车运行路况的能量管理策略;本发明充分利用混合动力公交车在同一路线上往复运行的特点,采用自学习的方法来获得适用于公交车运行路况的能量管理策略,具有能源分配合理、燃油经济性高、尾气排放少、鲁棒性好、节能环保的特点。
浙江大学 2021-04-11
基于燃料电池增程器时滞特性的瞬时优化能量管理策略改进
本项目拟进一步技术升级转化的核心技术科技成果“基于燃料电池增程器时滞特性的瞬时优化能量管理策略”来源于“十二五”863计划《燃料电池轿车动力系统技术平台研究与开发》(2011AA11A265)项目。围绕该核心技术,项目申请人已申请发明专利7项,其中4项已授权,发表相关学术论文二十余篇,并与上海大众汽车有限公司开展了初步的技术转化合作。1 技术简介  针对燃料电池电动汽车具有多个车载能量源这一特点,申请人从综合考虑动力蓄电池和燃料电池增程器协调工作的角度出发,提出了一种源于ECMS策略(等效燃料最小策略)的基于损失功率最小算法(minimum loss power algorithm,MLPA)的瞬时优化能量管理策略。该策略算法思想为,基于试验得到的各关键部件效率特性图,构造动力蓄电池、燃料电池、DC/DC等关键部件在每一时间步长内的损失功率函数,这些部件损失功率函数在每一时间步长内的线性叠加构成了多能量源动力系统损失功率指标函数,通过使该指标函数在每一时间步长取值最小(系统效率最高)来确定燃料电池增程器功率输出。图1为该控制策略导出的燃料电池实时功率输出优化控制曲面。 通过仿真及实车转毂试验台验证发现该策略具有以下优点,如图2-3所示:1)该MLPA瞬时优化能量策略对工况适应性强,多种常见工况下(NEDC,UDDS,HWFET,匀速工况)经济性优于传统能量策略。2)多种常见工况下,该MLPA瞬时优化能量管理策略均能够控制燃料电池功率输出变化平缓,实现了“浅充浅放”,有利于燃料电池以及蓄电池的寿命保护。
同济大学 2021-04-11
微能量源能量收集系统超低功耗片上温度传感
一、项目简介可针对不同环境,完成震动能、压电能、摩擦电能、光电能、热能、化学能、风能、电磁能、射频信号能等能量的收集、存储,并根据需要为片上或片外低功耗传感器提供稳定且低噪的输出能量供给。此外,针对不同的传感器结构和类型进一步提供丰富的接口电路,用来读取传感器所产生的感应信号。配合低功耗收发机模块,可实现完整的无线传感节点功能。二、特点12345678.电源管理部分静态电流可低至 65nA;.整个 ASIC 功耗(包含温度传感)不足 1µW;.具有最大功率点追踪;.匹配最小 16kΩ的厘米级以下压电片.具有能量收集、存储和调整输出功能;.提供超低噪声电源供给(10nA-100µA)片上/片外传感器;.存储的能量支持 ZigBee、Bluetooth 等低功耗协议间歇数据传输;.构建平均功耗小于 5µW 的无线传感节点。三、市场情况本项目能以超低功耗实现完整无线传感节点,在 IoT、环境监测等领域有良好的应用前景和社会经济效益。四、技术成熟度此技术成熟,即将获得专利授权,寻求与企业合作。-- 28 --西安交通大学国家技术转移中心五、合作方式联合研发 技术入股 □转让授权(许可) 面议
西安交通大学 2021-04-10
微能量源能量收集系统及超低功耗片温度传感
一、项目简介可针对不同环境,完成震动能、压电能、摩擦电能、光电能、热能、化学能、风能、电磁能、射频信号能等能量的收集、存储,并根据需要为片上或片外低功耗传感器提供稳定且低噪的输出能量供给。此外,针对不同的传感器结构和类型进一步提供丰富的接口电路,用来读取传感器所产生的感应信号。配合低功耗收发机模块,可实现完整的无线传感节点功能。二、特点12345678.电源管理部分静态电流可低至 65nA;.整个 ASIC 功耗(包含温度传感)不足 1µW;.具有最大功率点追踪;.匹配最小 16kΩ的厘米级以下压电片.具有能量收集、存储和调整输出功能;.提供超低噪声电源供给(10nA-100µA)片上/片外传感器;.存储的能量支持 ZigBee、Bluetooth 等低功耗协议间歇数据传输;.构建平均功耗小于 5µW 的无线传感节点。三、市场情况本项目能以超低功耗实现完整无线传感节点,在 IoT、环境监测等领域有良好的应用前景和社会经济效益。四、技术成熟度此技术成熟,即将获得专利授权,寻求与企业合作。-- 28 --西安交通大学国家技术转移中心五、合作方式联合研发 技术入股 □转让授权(许可) 面议
西安交通大学 2021-04-10
卫星无线能量传输系统
在结构构成极为精密复杂的卫星内部,微振动无法避免、十分难控,载荷几乎不可能时刻保持稳定,在几百甚至几千公里的太空中,卫星载荷一次微小的振动,都会差之毫厘,谬以千里。所以,载荷控制精度指标一直难以实现数量级提升。 团队采用“无线能量传输”技术,研发了基于同轴结构耦合结构的无线能量传输系统,可以实现卫星与载荷的物理接触彻底隔绝。该系统由发射调节器、发射耦合器、接收调节器以及接收耦合器组成。为了将技术应用于卫星以提升载荷精度,团队解决了动态场景下无线传能、失谐电路的补偿匹配以及大功率电能传输等关键技术难题。 该卫星无线能量传输系统被上海卫星工程(航天 509 所)研究所采用,团队按照航天规范,联合上海空间电源研究所(航天 811 所),在已有的原理样机的基础上,研制出航天正样产品,并于 2020 年 10 月完成正样产品的交付验收,在 2021 年某月装备在高分辨试验卫星发射上天。据了解,该卫星是首颗搭载无线能量传输技术的试验卫星,具有重大的意义。
西安电子科技大学 2023-02-02
1 2 3 4 5 6
  • ...
  • 90 91 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1