高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于神经网络的反演大气可降水量的MODIS模型改进方法
本发明公开了一种基于神经网络的反演大气可降水量的MODIS模型改进方法,包括以下步骤:S1:利用MODIS三通道比值法反演大气可降水量PWV,记为PWVMODIS;S2:利用BP神经网络建立测站处的纬度φ、测站处的高程h、年积日doy、PWVMODIS与测站GPS/MODIS反演的PWV残差RES之间的非线性关系;S3:对BP神经网络模型进行训练;S4:将φ、h、doy以及PWVMODIS作为输入参数代入BP神经网络模型,并计算出GPS测站处PWV残差RESBP;S5:利用RESBP补偿PWVMODIS,获得大气可降水量PWV=PWVMODIS+RESBP。本发明有效提高了建模精度。
东南大学 2021-04-11
一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法
项目成果/简介:本发明涉及一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法,旨在通过改进的广义回归神经网络解决茶叶储存时间分类问题,属于茶叶储存时间分类领域.其原理利用电子鼻传感器模拟人感官品评的功能和特征,采集不同时间不同传感器的特征值,构建样本集.利用果蝇算法优化广义回归神经网络,获得广义神经网络的平滑因子,进而构建毛峰茶叶储存时间的FOAGRNN分类模型和方法.本发明的有益效果在于将果蝇算法优化广义回归神经网络算法应用于毛峰茶叶数据中,提高预测毛峰茶叶储存时间分类的效率和准确度,为消费者提供茶叶储存时间分类的有效方法.
安徽农业大学 2021-04-10
一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法
本发明涉及一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法,旨在通过改进的广义回归神经网络解决茶叶储存时间分类问题,属于茶叶储存时间分类领域.其原理利用电子鼻传感器模拟人感官品评的功能和特征,采集不同时间不同传感器的特征值,构建样本集.利用果蝇算法优化广义回归神经网络,获得广义神经网络的平滑因子,进而构建毛峰茶叶储存时间的FOAGRNN分类模型和方法.本发明的有益效果在于将果蝇算法优化广义回归神经网络算法应用于毛峰茶叶数据中,提高预测毛峰茶叶储存时间分类的效率和准确度,为消费者提供茶叶储存时间分类的有效方法.
安徽农业大学 2021-04-29
基于卷积神经网络和小波灰度图的旋转机械故障诊断方法
本发明公开了一种基于卷积神经网络和小波灰度图的旋转机械故障诊断方法,其包括以下步骤:(1)将振动位移传感器及振动速度传感器设置在旋转机械上,利用所述振动位移传感器及所述振动速度传感器采集所述旋转机械的振动信号;(2)对采集到的所述振动信号进行多尺度小波分解,以得到小波灰度图;(3)按照预先训练过的卷积神经网络的输入形式,对所述小波灰度图进行预处理;(4)将预处理后的所述小波灰度图输入到所述卷积神经网络,所述卷积神经网络对接收到的所述小波灰度图进行分析诊断,以得到所述旋转机械的故障诊断结果。
华中科技大学 2021-04-13
右半脑带血管和神经模型
XM-606A右半脑带血管和神经模型   XM-606A右半脑带血管和神经模型显示大脑半球、间脑、小脑和脑干中脑、脑桥、延髓各个部分以及脑神经和脑血管等结构。 尺寸:自然大,15×15×6cm 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
基于多尺度大核卷积双残差神经网络的超分辨率图像重建方法
本发明公开了一种基于多尺度大核卷积双残差神经网络的超分辨率图像重建方法,适用于图像处理领域,包括以下步骤:对数据集进行裁剪,将裁剪后原始低分辨率图像输入到预处理模块中,进行图像归一化和数据增强操作,生成预处理后的低分辨率图像;预处理后的低分辨率图像组成失真图像块数据集,构成训练集、验证集和测试集;根据已有的失真图像块数据集,构建一个基于多尺度大核卷积双残差神经网络的超分辨率图像重建方法;将数据集输入到构建的多尺度大核卷积双残差神经网络中分提取语义特征,并用模型的上采样模块对特征图进行放大,生成超分辨率图像。本方法引入多尺度大核卷积与双残差结构,在神经网络中使用视觉注意力机制,提取的特征更符合人类视觉感知特性,使图像超分辨率图像重建更加准确。
南京工业大学 2021-01-12
一种基于RBF神经网络预测控制的双进双出球磨机控制系统及控制方法
本发明公开了一种基于RBF神经网络预测控制的双进双出球磨机控制系统及控制方法,控制系统包括基于RBF神经网络模型的预测控制器、控制量初始化模块以及被控对象,被控对象为双进双出球磨机模型,其输出连续被控量经离散化后生成的离散被控量和被控量当前设定值输入控制量初始化模块和预测控制器,控制量初始化模块输出控制量初始值输入给预测控制器,预测控制器输出离散控制向量经零阶保持器转换为连续控制量输出给双进双出球磨机模型。控制方法采用RBF神经网络正向模型和RBF神经网络逆向模型实现对被控对象的预测控制。本发明可以对系统进行提前控制和调节,适用于大滞后系统的控制,被控量响应快、超调量小,同时具有良好的鲁棒性。
东南大学 2021-04-11
XM-606A右半脑带血管和神经模型
XM-606A右半脑带血管和神经模型   XM-606A右半脑带血管和神经模型显示大脑半球、间脑、小脑和脑干中脑、脑桥、延髓各个部分以及脑神经和脑血管等结构。 尺寸:自然大,15×15×6cm 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
阿尔茨海默病脑活动和脑网络异常准确刻画方法
阿尔茨海默病(AD)是一种不可逆的神经退行性疾病。大量基于功能磁共振影像的研究提示AD可能是一种失连接综合征。但是由于缺乏大样本、多站点的数据集交互验证,迄今为止与AD脑功能活动、脑连接的异常模式还没有得到一个清晰一致的结论,脑功能活动是否可以作为AD的早期影像学标记也有待进一步验证。为准确刻画AD的脑活动、脑连接和脑网络异常模式,并探索功能磁共振影像指标作为AD早期识别标记的可行性,中国科学院自动化研究所脑网络组研究中心联合中国人民解放军总医院、首都医科大学宣武医院、天津环湖医院和山东大学齐鲁医院等国内外多家单位的研究人员组成的研究团队,共同利用多中心、大样本的功能磁共振影像数据(N=688),使用荟萃分析的方法找到了AD中稳定的、可重复的功能异常模式,并从标记的泛化性、个体化精准诊断可行性与生物机制解析等方面进行了系统的研究。该研究成果近日在《Human Brain Mapping》在线发表。本研究首次使用多中心、大样本的静息态功能磁共振数据集对AD患者的功能异常进行了全面系统的研究,并评估了与AD有关的功能异常作为AD诊断的生物标记物的有效性和泛化性。更具体地说,研究发现脑内默认网络(DMN)、扣带回、基底神经节以及海马的异常功能连接和局部活动可能是AD认知能力、脑内信息交流受损的基础。脑网络异常的严重程度的个体间差异与认知损害程度、β淀粉样蛋白累积程度显著相关,这进一步加深了我们对AD的神经生物基础和脑功能活动异常之间关系的理解。跨中心独立验证的个体识别准确率和临床评分预测的结果表明脑功能活动异常可能作为AD发生发展可能的影像学标记物。后续独立验证数据集和一系列的对比实验证实了结果的可重复性和泛化性,夯实了本文的结论。这也是该团队继基于多中心的功能磁共振阿尔茨海默病脑活动改变研究和基于海马影像组学的AD早期识别的研究之后,在AD的脑影像异常表征上取得的又一重要进展。团队后续的工作将集中在更多独立中心、纵向跟踪的高危人群的验证工作,并希望和更多的团队建立进一步的合作。该研究受到国家重点研发计划课题、国家自然科学基金委面上项目、中国科学院先导项目和模式识别国家重点实验室开放课题等项目的支持。相关论文信息:https://onlinelibrary.wiley.com/doi/10.1002/hbm.25023
首都医科大学 2021-04-11
地层深部测温系统
该系统以光纤 Bragg 光栅应变温度传感理论为依据,研制煤矿地层温度测试系统。 2011 年、 2012 年先后对鲍店煤矿工业广场主副井和东滩煤矿西风井的地层温度进行长期监测,并实现了 24 小时远程在线监测。
西安科技大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 84 85 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1