高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
肝癌靶向纳米药物
本项目提供了一种靶向肝癌细胞的纳米药物(LTAG-NPs)。该药物以天然多糖搭载临床广泛使用的铂类抗癌药物,具有合成简便,成分友好的特点,通过与肝(癌)细胞发生特异性结合,实现肝癌靶向效果。药物在肝部高效富集并在肿瘤细胞中释药。因此,LTAG-NPs在有效抑制肿瘤生长的同时,明显降低传统化疗药物强烈的毒副作用,提高患者顺从度和安全性。具有较高临床应用价值和转化前景。 体外释药实验表明,在肿瘤细胞环境下,LTAG-NPs 4 小时释放药物超过 20%,6 天药物全部释放,既在 6 天内缓慢持续释药;药物代谢实验证明,LTAG-NPs 在注射小鼠体内 24 h 后仍保持较高药物浓度,具有血液长循环效果;生物分布实验证明,纳米药物在肝部的富集是传统化疗药物的 5-6 倍,明显降低了在肾脏的积累;对于同时种有肝异位瘤和肺异位瘤的小鼠,LTAG-NPs 在肝异位瘤的富集量为肺异位瘤的 2.5 倍,说明具有优异的肝肿瘤靶向能力。体内抑瘤实验证明,纳米药物具有与传统化疗药物相当的抑瘤效果但毒副作用明显降低,尤其是明显降低了肾毒性。大剂量注射传统化疗药物的小鼠在5 天内全部死亡,而纳米药物组则保持存活率 100%,且小鼠体重稳步上升,体征良好。 以上动物实验全部由医院完成并进行相关评价
南开大学 2021-04-13
放射性药物
放射性药物是可用于诊断或治疗目的的药物,由放射性同位素与有机分子键合组成。有机分子将放射性同位素传递至特定的器官、组织或细胞。 ​ 根据特性选择放射性同位素发射穿透伽马射线的放射性同位素用于诊断(成像),发出的辐射脱离身体后被特定仪器(SPECT / PET相机)检测到。通常,用于成像的同位素产生的辐射在1天后通过放射性衰变和正常的身体排泄完全消除。最常见的用于成像的同位素是:99mTc、I123、I131、Tl201、In111和F18。 ​ 发射短程粒子(α或β)的放射性同位素用于治疗,因为它们能够在非常短的距离内失去所有能量,因此产生大量局部伤害(例如细胞破坏)。该特性用于治疗目的:破坏癌细胞,骨癌或关节炎的姑息治疗中减缓疼痛。这类同位素在体内的停留时间比成像同位素更长;用来提高治疗效率,但仍然限制在几天内。最常见的治疗同位素是:I131、Y90、Rh188和Lu177。 ​ 放射性药物的工作原理是:基于使用分子“出租车”,将受控剂量的放射性活度特异性地传递至目标患病组织(通常是癌细胞),以便根据所用放射性核素的类型可视化(诊断)或治愈(治疗)组织。放射性药物通常包含负责将放射性核素引导至目标组织的生物载体(抗体、肽等)。双功能螯合剂牢固地抓住放射性核素并确保与生物载体之间的牢固结合。
北京先通国际医药科技股份有限公司 2022-02-25
一种自适应的无标志点三维点云自动拼接方法
本发明属于三维测量领域中的点云数据拼接技术,具体为一种 自适应的无标志点三维点云自动拼接方法,本发明包括几何特征点的 查找,图像特征点的查找,配准算法选择模型的建立,基于 RANSAC 的几何特征点匹配,利用 RANSAC 排除误匹配图像特征点,利用 SVD 算法求解旋转平移矩阵 RT,最后利用 RT 矩阵完成两片点云拼接。该 方法因为利用物体特征点来代替标志点进行拼接,可用于不能粘贴标 记点的测量场合;同时依靠对应
华中科技大学 2021-04-14
下丘脑与垂体激素对靶器官作用电动模型
XM-D014下丘脑与垂体激素对靶器官作用电动模型   XM-D014下丘脑与垂体激素对靶器官作用电动模型由集成电路控制,主要演示丘脑垂体的激素对相应靶器官细胞分泌的功能作用,示腺垂体(前叶)、中间部、脑神经垂体(后叶)。   一、显示内容: ■ 腺垂体(前叶): 1、嗜酸性细胞: A:生长激素细胞→生长激素→骺软骨 B:催乳激素细胞→催乳素→乳房发育乳汗分泌 2、嗜碱性细胞: A:促甲状腺激素细胞→促甲状腺素→甲状腺→甲状腺素→周围器官组织→反食类到下丘脑 B:促肾上腺皮质激素→肾上腺→肾上素去甲肾上腺→周身→下丘脑 C:促性腺激素细胞→卵巢→雌激素(卵泡刺激素、黄体生成素)(间质细胞刺激激素)睾丸→雌激素 ■中间部:黑素细胞刺激素→皮肤黑素细胞 ■脑神经垂体(后叶):视上核、室旁核→视上垂体素→子宫→室旁垂体束→后叶A催产素→乳房B抗利尿素→肾远端曲管→小血管血压。   二、技术参数: ■ 尺寸:51×23×86cm ■ 材质:PVC材料+木框   三、标准配置: ■ XM-D014下丘脑与垂体激素对靶器官作用电动模型:1台 ■ 电源线:1根 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
下丘脑与垂体激素对靶器官作用电动模型
XM-D014下丘脑与垂体激素对靶器官作用电动模型   XM-D014下丘脑与垂体激素对靶器官作用电动模型由集成电路控制,主要演示丘脑垂体的激素对相应靶器官细胞分泌的功能作用,示腺垂体(前叶)、中间部、脑神经垂体(后叶)。   一、显示内容: ■ 腺垂体(前叶): 1、嗜酸性细胞: A:生长激素细胞→生长激素→骺软骨 B:催乳激素细胞→催乳素→乳房发育乳汗分泌 2、嗜碱性细胞: A:促甲状腺激素细胞→促甲状腺素→甲状腺→甲状腺素→周围器官组织→反食类到下丘脑 B:促肾上腺皮质激素→肾上腺→肾上素去甲肾上腺→周身→下丘脑 C:促性腺激素细胞→卵巢→雌激素(卵泡刺激素、黄体生成素)(间质细胞刺激激素)睾丸→雌激素 ■中间部:黑素细胞刺激素→皮肤黑素细胞 ■脑神经垂体(后叶):视上核、室旁核→视上垂体素→子宫→室旁垂体束→后叶A催产素→乳房B抗利尿素→肾远端曲管→小血管血压。   二、技术参数: ■ 尺寸:51×23×86cm ■ 材质:PVC材料+木框   三、标准配置: ■ XM-D014下丘脑与垂体激素对靶器官作用电动模型:1台 ■ 电源线:1根 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
延边大学李东浩教授课题组:靶型多腔电泳同时分离与制备细胞外囊泡
本研究提出一种基于连续梯度非均匀电场结合梯度凝胶孔径分布的靶型多腔电泳装置(Circular Multicavity Electrophoresis,CME)实现细胞外囊泡的分离制备。
延边大学 2025-02-12
高导电高分子点胶
中试阶段/n高导电高分子点胶是一种具有电磁屏蔽功能、使用时可在施工部位就地成型的一类电磁密封材料。在成型前呈膏状,成型时通过在需要电磁密封部位挤压成所需要的形状,在常温下自动固化,形成弹性体衬垫。具有高电性能而达到电磁屏蔽的目的。该材料最大的优点是可将这种半流体状材料,按照客户指定的尺寸和形状要求,直接点涂到电子装置部件,在室温下成型成衬垫,消除了使用传统衬垫时裁切成型及装配工序,从而大大节省装配时间和制造成本,产品无污染。主要用于电子产品。技术指标:体积电阻率<0.08Ω?cm;绍A硬度:45-7
湖北工业大学 2021-01-12
新型碳量子点生物成像剂
本方法以丙三醇作为溶剂及碳源快速制备大量粒径小于 10 nm 的碳量子点。这种碳量子点的荧光量子产率能够达到 30 %左右。制 备好的碳量子点,不需要任何提纯即可与成膜性较好的高聚物混合得 到荧光碳量子点薄膜。而且这种碳量子点毒性低,水溶性好,荧光量 子产率高,在细胞及活体成像方面表现出显著优势。总之,该制备方 法简单易行,材料来源广泛且廉价,产率大。所得的荧光碳量子点具 有荧光量子产率高、易成膜、低细胞毒性且耐光漂白等性质,已经作 为生物成像剂用于细胞的荧光共聚焦成像
兰州大学 2021-04-14
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 59 60 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1