基于协同尺度学习的行人重识别方法
本发明公开了一种基于协同尺度学习的行人重识别方法,属于监控视频检索技术领域。本发明首先 根据已标注训练样本集 L 中图像的颜色和纹理特征,进行尺度学习得到相应马氏距离中的协方差矩阵 Mc 和 Mt;随机选择查询对象使用 Mc 和 Mt 进行马氏距离度量,得到相应排序结果,从中取得正样本 和负样本生成新的已标注训练样本集 L,更新 Mc 和 Mt,直到未标注训练样本集 U 为空,得到最终的 标注样本集 L*,并融合颜色和纹理特征得到 Mf,就可以使用基于 Mf 的马氏距离函数进行行人重识别。 本发明在半监督框架下研究基于尺度学习的行人重识别技术,通过未标注样本辅助标注样本进行尺度学 习,符合实际视频侦查应用标注训练样本难以获取的要求,能有效提升少标注样本下的重识别性能。
武汉大学
2021-04-13