高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
聚偏氟乙烯基电极材料及其超级电容器的制备方法
本发明涉及一种聚偏氟乙烯基扣式与卷绕式超级电容器及其电极材料制备方法。该方法包括:(1)聚偏氟乙烯混合液制备;(2)聚偏氟乙烯复合膜制备;(3)对复合膜活化处理,制得扣式与卷绕式超级电容器的聚偏氟乙烯膜电极材料。以聚偏氟乙烯膜材料为扣式与卷绕式超级电容器的电极,制备成扣式超级电容器与卷绕式超级电容器。本发明制备的电极材料,不用直接添加活性物质,其成本低、充放电速度快、工艺简单;制备的扣式与卷绕式超级电容器充放电性能好、循环寿命长;且电极材料可加工为任意大小,其厚度大约为85~120μm,符合器件小型化的要求及扩大其应用范围。
四川大学 2021-04-11
基于过渡金属基化合物的高能量密度超级电容器研发
超级电容器是一种新型绿色储能器件,拥有比功率大、充放电效率高, 寿命长等优点,在低碳经济时代展现出巨大应用前景,已经被广泛应用于电 子产品、电动汽车、混合电动汽车、无线通讯设施、信号监控、太阳能及风 力发电等领域。开发具有高能量、高循环性和低成本的超级电容器是该领域 未来重要研究之一。电极材料作为超级电容器的核心组成部分,对其储能 性能有着至关重要的影响,而具有高理论容量、低价格的过渡金属基化合物 (Fe、Co、Ni)是实现高容量、低成本超级电容器首选的电极材料。以过渡金 属基化合物为主要研究对象,对其组分及结构进行了调控,通过储能性能测 试及储能机理分析,为开发高性能、低成本的活性电极材料提供实验依据。 这一研究的开展,给组装超高能量密度的超级电容器并使其从实验室走向我们 的日常生活带来了新的前景。1. 先进性及产业化前景:提高性能、降低成本一直以来都是超级电容器发展的 主旋律,其中能量密度低是超级电容器发展面临的主要问题,因此开发出具 有高能量、成本低的超级电容器迫在眉睫。就提高性能而言,超级电容器的 电极改进是重点,主要途径是通过提高电压窗口和提高电极材料的比电容。目前针对超级电容器电极材料的研究主要集中在:(1)改进现有的电极材料;(2)开发新型电极材料;(3)改进生产工艺,实现低成本化。目前在全球范 围内达到工业化生产水平的超级电容器基本都是以双电层为储能机制的活性 碳基超级电容器,而以贋电容为储能机制的超级电容器尚处于实验室开发阶 段,因此超级电容器还有很大的发展空间。2. 对所在行业和关联产业发展和转型升级的影响:根据超级电容器的容量大小 和功率密度,可以将其用作后备电源、替换电源和主电源。当主电源发生故障 而不能正常使用时,超级电容器便起到后备补充作用,它具有寿命长、充放电快 和环境适应性强等优点。当用作替换电源时,主要应用于对环境变化有特殊要 求的场合,例如白天太阳能提供电源并对超级电容器充电,晩上则由超级电 容器提供电源。作为主电源时,主要利用超级电容的大功率密度,一般是一tin个或几个超级电容器通过一定的方式连接起来持续释放几毫秒至几秒的大电 流,放电之后,再由低功率的电源对其充电。3.   市场分析:根据IDTechEX数据统计,2014年超级电容器全球市场规模为11 亿美元,预计到2018年,超级电容器全球市场规模将达到32亿美元,年复合 增长率为31%,并预测将会以此速度预计到2018年,超级电容器全球市场规模 将达到32亿美元,年复合增长率为31%,并预测将会以此速度继续增长。我国 将“超级电容器关键材料的研究和制备技术"列入到《国家中长期科学和技 术发展纲要(2006-2020年)》,作为能源领域中的前沿技术之一。有数据显示, 2015年国内超电市场规模已经超过了 70亿元,因此,在这样的一个大背景下, 研究新材料以开发具有超高能量密度的超级电容器具有非常大的市场前景。
重庆大学 2021-04-11
一种超高速率充放电超级电容器薄膜电极的制备
高校科技成果尽在科转云
电子科技大学 2021-04-10
高介孔率、强疏水性新型活性碳材料及其高效吸附回收VOCs技术
高校科技成果尽在科转云
西安交通大学 2021-04-10
一种介孔二氧化硅包覆纳米金颗粒的制备方法
本发明公开了一种利用介孔二氧化硅包覆纳米金球的方法,结合纳米金球合成的传统手段-柠檬酸钠还原法,采用一锅两步法发展了一种介孔二氧化硅包覆纳米金球的方法,该方法选择在碳链的阳离子表面活性剂如十六烷基三甲基溴化铵的碱性水溶液体系中对纳米金颗粒进行包覆。采用本发明的包覆方法,无需引发剂活化和后续分离纯化,具有简单、高效、高产的特点,并且产物 Au@mSiO2 的大小均一,粒径大小在 20-120nm 的范围内连续可调,且在整个范围内呈现出均一有序的介孔状结构。
华中科技大学 2021-04-14
利用两嵌段聚合物 PS-PAA 合成介孔二氧化硅材料
该方法合成的材料具有规则的孔隙结构,高度有序,合成条件温和简单,可操行强,重复性好,材料具有较大的比表面积,可用于多种功能化,进行药物释放等应用。
上海理工大学 2021-01-12
富含维生素E植物调和油的生产方法
本发明涉及一种富含维生素E植物调和油的生产方法,经本发明方法加工成的植物调和油维生素E含量高.技术方案:将原料油离心,过滤去掉杂质,其特征在于:将番茄清洗干净,切半去蒂放入组织捣碎机中捣碎,将捣碎的番茄糊与原料油中的葵花籽油,按照每毫升葵花籽油加入1克番茄糊的比例进行混合,混合后放置避光处,提取番茄红素,将含有番茄红素的葵花籽油与其它原料油混合后加入脂溶性茶多酚.由于本发明在葵花籽油中溶入了番茄红素,有效的减少了油脂中维生素E的损失,加工后的植物调和油中维生素E的含量可以达到40-50毫克/100克.
哈尔滨商业大学 2021-05-04
破壁灵芝孢子维生素C胶囊加工技术
成果描述:灵芝在我国已有悠久的药用历史,灵芝在中国和其他东南亚国家作为一种草药被广泛用于医药临床,防治多种疾病,如高血压、支气管炎、神经衰弱、肝病、肿瘤疾病、免疫系统疾病等。灵芝具有抑制肿瘤和增强免疫力的功效,且无毒副作用。此外,也应用于保健食品,作为重要的原料之一。灵芝孢子( Ganoderma lucidium spore )是灵芝生长成熟期从菌盖弹射出来极其细小的孢子,生物学上称担孢子,为灵芝的生殖细胞,具有灵芝的全部遗传活性物质,其药用价值也正日益受到重视。灵芝孢子集中起来后呈末状,通称灵芝孢子粉,灵芝孢子粉比灵芝子实体具有更强更全面的作用,它是灵芝的精华部分,具有抑制肿瘤细胞生长,调节、提高人体免疫力,降低胆固醇,提高肌体耐缺氧能力等功能。灵芝孢子粉在增强免疫,抑制肿瘤的药效方面远远超过其母体灵芝。我们开发破壁灵芝孢子维生素C胶囊成功解决了破壁灵芝孢子粉易氧化的业界难题。维生素C作为一种营养补充剂具有增强肌体免疫力,降低血胆固醇作用。同时,维生素C又是一种天然抗氧化剂,通过自身与氧自由基结合防止其它成分的氧化。另外,产品在在生产工艺上也具有独特性:待灵芝孢子破壁后,采用独特的生物涂膜工艺将维生素C喷涂在孢子粉表面形成包裹。灵芝孢子中的功效成份因得到抗氧化涂层的保护而完好无损。市场前景分析:产业化成果。目前该技术已经成功转让2家企业,均在当年实现赢利。与同类成果相比的优势分析:所有原料符合中国卫生部关于保健的原料要求,产品的卫生指标、理化指标、功效成分指标和安全性均符合卫生部有关保健食品的相关要求。
四川大学 2021-04-10
高固体含量木质纤维素同步糖化与发酵技术
同步糖化与发酵是生物转化木质纤维素生产燃料乙醇或高值化学品的主流工艺。目前,由 于发酵产品浓度低所导致的高额的产品分离成本以及生产成本是纤维素原料生物转化中所面临 的紧迫问题。提高同步糖化与发酵操作中木质纤维素底物的固体含量,进而得到高浓度的发酵 产品,降低纤维素基产品的生产成本是木质纤维素生物炼制技术的发展趋势。本技术的产业化 实施将大大提高纤维素基发酵产品的浓度,大幅降低相关产品的分离成本和生产成本,为木质 纤维素生物炼制的产业化奠定基础。 本项目的高固体含量木质纤维素同步糖化与发酵技术主要包括同步糖化与发酵木质纤维素 培养发酵微生物和高固体含量同步糖化与发酵生产纤维素基产品等主要工序。其中,同步糖化 与发酵木质纤维素培养发酵微生物通过酶解木质纤维素得到的葡萄糖为发酵微生物提供碳源来 培养发酵菌种,实现了微生物培养碳源的原位生产,无需外源商业葡萄糖的添加,大大降低了 发酵微生物的培养成本;高固体含量木质纤维素同步糖化与发酵技术则通过自主研发的螺带型 反应器处理固含量达40%以上的底物进行发酵,与常规发酵反应器相比,电耗降低80%以上。 通过该成套技术可以得到不低于10% (v/v) 浓度的燃料乙醇或其它高值化学品的发酵液,纤维 素转化率达75%以上。本技术的实施将会大大降低纤维素基产品的生产成本,为木质纤维素生 物炼制的产业化奠定基础。
华东理工大学 2021-04-11
基于核酸适配体的抗生素快速检测试纸
抗生素能有效防治动物疾病并促进生长,在畜牧业、养蜂业等领域被大量使用。而超过规定的滥用会造成抗生素在动物源性食品及环境中积累,对人体健康和环境安全产生危害。抗生素传统检测方法比如微生物检测、HPLC 等理化分析不仅灵敏度低,而且不能满足对食品和水源等抗生素含量的现场检测。目前市场上有一些基于抗体的抗生素检测试剂,但抗体种类有限,质量良莠不齐。核酸适配体本质上以单链 DNA 为主,不仅能特异性识别抗生素,而且具有亲和力高、温度稳定性好、成本低、质量高度稳定等特性,有望取代抗体在抗生素快检试剂中充当靶分子识别元件。 本实验室长期以来致力于抗生素特异性适配体的筛选和优化,已获得一批能高特异性高亲和力结合抗生素的适配体序列。利用这些适配体研制了抗生素 快速检测试纸。以卡那霉素为例,利用卡那霉素特异性适配体修饰的金纳米粒子(AuNPs-apt)作为探针,与适配体互补的寡核苷酸 DNA1 修饰的银纳米粒子(AgNPs-DNA1)作为信号放大元件,设计制备的试纸能够在 10 min 之内完成检测,利用肉眼辨别的检测限可达到 35 nmol/L,远低于欧盟规定乳制品中卡那 霉素含量不得超过 150 μg/kg (约 265 nmol/L)。若采用胶体金读数仪,不仅可实现定量测定,检测限更可达到 80 pmol/L。对于蜂蜜等成分相对简单的样品,可直接用试纸进行测定。对于牛奶、奶粉、肉类等成分较复杂或非液态样品,须经简单样品处理后测定。样品处理过程可采用标准化流程,时间小于 30 min。
江南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 21 22 23
  • ...
  • 38 39 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1