高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
化合物薄膜太阳能电池及其制备方法
化合物薄膜太阳能电池及其制备方法,属于半导体光电材料与薄膜太阳能电池制备领域,解决现有化合物薄膜太阳能电池中所需材料在地壳中含量较少、价格昂贵、对人体有毒的问题。本发明的化合物薄膜太阳能电池,包括衬底及透明电极层、N 型缓冲层、P 型吸收层和背电极层,P 型吸收层材料为 Sb2Se3、Cu3SbS3 或 Cu3SbS4;本发明的制备方法包括沉积透明电极层步骤、沉积 N 型缓冲层步骤、沉积 P 型吸收层步骤、沉积电极层
华中科技大学 2021-04-14
噁唑啉化合物改性热塑性塑料的研究
噁唑啉化合物含氮和氧的五元杂环化合物,其中活性最大的是2-噁唑啉化合物。它可与羧基、酸酐、氨基、环氧基、巯基、羟基、异氰酸根等基团进行阳离子或自由基开环聚合反应。噁唑啉化合物在热塑性高分子材料的应用主要表现在反应性增容和对填料及纤维的表面处理两个方面。 采用噁唑啉化合物扩链PET或PBT,也都得到较好的增粘效果。噁唑啉化合物还可用于塑料回收等方面,通过提高大分子链的分子量来抵御降解。 噁唑啉化合物可以改善塑料共混体系的相容性,使物性显著提高。这是近年来的研究热门。一方面
四川大学 2021-04-14
新型微管靶向化合物,抑增殖、阻周期、诱凋亡
通过对杜鹃素的结构修饰,我们发现了一类新型微管靶向化合物。体外处理培养细胞,可完全阻止细胞增殖和分裂,细胞形态变圆、变大,细胞周期阻滞在 G2/M 期,并诱发细胞凋亡,细胞内微管排列变得紊乱。胞外微管动力学实验证实该类化合物抑制微管的聚合。现有结果证实该类化合物较强的体外抗肿瘤活性。
兰州大学 2021-04-14
螺羟吲哚类化合物的合成方法
本发明属于有机合成领域,公开了一种螺羟吲哚类化合物的合成方法,是以靛红类化合物、活性亚甲基化合物和1,3-二羰基化合物为原料,以大孔型强碱性阴离子交换树脂或凝胶型强酸性阳离子交换树脂为催化剂,在水相中“三组分一锅法”合成螺羟吲哚类化合物,该方法具有操作简便、反应条件温和、反应时间短(0.5~3小时)、产率高(90%~99%)、催化剂能重复使用、环境友好、成本低等优点。
四川文理学院 2015-02-25
一种多取代呋喃化合物的制备方法
呋喃类化合物是一类重要的杂环化合物,该类化合物不仅是许多 天然产物的核心结构单元,而且大多具有生物活性,在医药、农药以 及生物化学、天然产物合成,药物合成,材料化学等方面有广泛的应 用。此外,呋喃类化合物还可以发生取代反应、氧化反应、DA 反应、 环加成反应等多种化学转化,是合成碳环以及杂环化合物等的重要中 间体,在有机合成中有着广泛的应用。因此呋喃类化合物合成的方法 学研究一直被人们所关注。 传统的呋
兰州大学 2021-04-14
具有植物生长调节活性的化合物及其制备
可以量产/n该项目公开了一种具有植物生长调节活性的化合物,该化合物具有通式(Ⅰ)的结构,通式(Ⅰ)中,R、R1为苯环上的各种取代基,R代表氢原子、烷基、氟原子,氯原子、硝基、三氟甲基,R1代表氢原子、氟原子,该化合物是通过将盐酸β—胍乙醇与取代苯异腈酸酯反应制备得到的。本发明还提供了化合物作为植物生长调节剂有效成分的应用
华中农业大学 2021-01-12
过渡金属对贵金属团簇物性的修饰
项目简介: 贵金属团簇是一种山Au、Ag 等贵金属元素的几个至几十个原子形成的聚集体 , 由于 Au、Ag 等原子的化学 惰性, 使得它们具有良好的生物相容性, 被广
西华大学 2021-04-14
低成本、高性能的新颖热电化合物的研究
随着社会的发展与进步,日益突出的能源供需矛盾不断将寻找清洁、高效、经济的新型能源材料推向研究前沿。热电材料是一类能利用热电效应,直接将热能(包括太阳能、地热、工业余热等能量)转换成电能的材料,由于热电转换技术便捷、环保等优势,在车载冰箱、深空探测器电源等领域具有不可替代的地位,受到科学家们的高度重视。而探索发现低成本、高丰度、低毒性的高效热电材料,是该领域基础研究的重点,是一项面临巨大挑战的研究工作。 吴立明2004年发明了独特且安全的固相合成方法——硼硫化法(J. Am. Chem. Soc. 2004, 126, 4676-4681.),近期,课题组利用该方法,发现了一种新的四方相α-CsCu5Se3,并实现宏量合成。该材料拥有前所未见的独特晶体结构:Cs+由类中国结形状的Cu8Se8结构单元构筑的三维无限扩展结构,其中镶嵌Cs+金属阳离子。α-CsCu5Se3热稳定性好,表现出典型晶态固体的热传输行为,并遵循Umklapp散射机制,这与具有类液态的热传导行为的二元化合物Cu2-xSe完全不同。晶体学及热传输性能研究表明α-CsCu5Se3指出了一个有效抑制Cu+液体传输行为特征的方法。与吴立明老师2016年发现的高性能热电材料CsAg5Te3(Angew. Chem. Int. Ed. 2016, 55, 11431–11436)相比,α-CsCu5Se3的晶体单胞体积减小了30%,导致材料具有更强的原子间d轨道重叠作用,从而显著降低有效质量(m*),这使得α-CsCu5Se3相比于CsAg5Te3实现了功率因子200%的增长,达到8.17 μW/cm/K2,是目前报道的碱金属富铜硫属化合物中最高值;同时,理论研究表明,由于结构中的Cu–Se软化学键和Cs+ 离子扰动作用,该材料具有很低的热导率。综合上述各方面因素,该化合物的本征热电优值ZT达到1.03(980 K)。进一步通过Sb掺杂优化热电性能的研究发现:Sb3+的孤对电子能够增大材料的晶格非谐性,有效增强Umklapp型散射,从而降低声子速度,使得α-Cs(Cu0.96Sb0.04)5Se3的晶格热导率进一步降低至0.40 W/m/K,热电优值ZTmax提升到1.30。该工作系统深入研究了α-CsCu5Se3体系结构和热电相关性能的关系,为低成本,高丰度,高性能硫属化合物材料的设计探索研究迈出重要的一步。
北京师范大学 2021-02-01
低成本、高性能的新颖热电化合物的研究
随着社会的发展与进步,日益突出的能源供需矛盾不断将寻找清洁、高效、经济的新型能源材料推向研究前沿。热电材料是一类能利用热电效应,直接将热能(包括太阳能、地热、工业余热等能量)转换成电能的材料,由于热电转换技术便捷、环保等优势,在车载冰箱、深空探测器电源等领域具有不可替代的地位,受到科学家们的高度重视。而探索发现低成本、高丰度、低毒性的高效热电材料,是该领域基础研究的重点,是一项面临巨大挑战的研究工作。 吴立明2004年发明了独特且安全的固相合成方法——硼硫化法(J. Am. Chem. Soc. 2004, 126, 4676-4681.),近期,课题组利用该方法,发现了一种新的四方相α-CsCu5Se3,并实现宏量合成。该材料拥有前所未见的独特晶体结构:Cs+由类中国结形状的Cu8Se8结构单元构筑的三维无限扩展结构,其中镶嵌Cs+金属阳离子。α-CsCu5Se3热稳定性好,表现出典型晶态固体的热传输行为,并遵循Umklapp散射机制,这与具有类液态的热传导行为的二元化合物Cu2-xSe完全不同。晶体学及热传输性能研究表明α-CsCu5Se3指出了一个有效抑制Cu+液体传输行为特征的方法。与吴立明老师2016年发现的高性能热电材料CsAg5Te3(Angew. Chem. Int. Ed. 2016, 55, 11431–11436)相比,α-CsCu5Se3的晶体单胞体积减小了30%,导致材料具有更强的原子间d轨道重叠作用,从而显著降低有效质量(m*),这使得α-CsCu5Se3相比于CsAg5Te3实现了功率因子200%的增长,达到8.17 μW/cm/K2,是目前报道的碱金属富铜硫属化合物中最高值;同时,理论研究表明,由于结构中的Cu–Se软化学键和Cs+ 离子扰动作用,该材料具有很低的热导率。综合上述各方面因素,该化合物的本征热电优值ZT达到1.03(980 K)。进一步通过Sb掺杂优化热电性能的研究发现:Sb3+的孤对电子能够增大材料的晶格非谐性,有效增强Umklapp型散射,从而降低声子速度,使得α-Cs(Cu0.96Sb0.04)5Se3的晶格热导率进一步降低至0.40 W/m/K,热电优值ZTmax提升到1.30。该工作系统深入研究了α-CsCu5Se3体系结构和热电相关性能的关系,为低成本,高丰度,高性能硫属化合物材料的设计探索研究迈出重要的一步。
北京师范大学 2021-04-10
一种色满化合物及其提取方法和应用
本发明公开了一种色满化合物及其提取方法和应用。所述色满化合物为R?3?methyl?6, 8?dihydroxy?7?methyl?3, 4?dihydroisochromen?1?one(R?3?甲基?6, 8?二羟基?7?甲基?3, 4?二氢色满?1?酮)。该化合物的提取方法为:将地鳖虫置于有机溶剂中浸提,得到浸提液,将浸提液浓缩后加水制备水混悬液;对水混悬液进行萃取,将萃取液浓缩,获得浸膏;从浸膏中分离纯化得到所述色满化合物。本发明从地鳖虫中分离鉴定了一种具有新颖结构的色满化合物,具有广泛的药理活性,能用于制备抗肿瘤药物或肿瘤预防保健食品、抗酪氨酸酶药物或美白化妆品
浙江大学 2021-04-13
首页 上一页 1 2 3 4 5 6
  • ...
  • 177 178 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1