高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
纳米钛酸钡基电子陶瓷粉体的溶胶-凝胶自燃合成产业化
铁电陶瓷粉体及其集成器件的研究与开发是目前最为活跃的领域。大部分铁电陶瓷是钙钛矿型复氧化物,其中最为重要的是BaTiO3基氧化物陶瓷。BaTiO3是在第二次世界大战的1942年到1945年间,由美国、苏联、日本各自发现的高介电常数、强介电体的材料。由于其具有优越的介电、压电、铁电性能,被广泛应用于制备各种陶瓷电容器、微波器件、铁电存储器、温度传感器、非线性变阻器、热敏电阻、超声波振子、蜂窝状发热体等电子器件。随着现代科学技术的飞速发展和电子元件的小型化、高度集成化,需要制备与合成符合发展要求的高质量的钛酸钡基陶瓷粉体。纳米BaTiO3基电子陶瓷具有独特的绝缘性、压电性、介电性、热释电性和半导体性为元器件的小型化、集成化带来可能,大大提高了产品的附加值和市场竞争力。如采用纳米BaTiO3粉末制多层电容器,可以显著减薄每层厚度增加层数,从而大大提高电容量和减小体积。因此,低成本合成钛酸钡基纳米陶瓷粉体对我国信息产业、电子工业等的发展具有重要的意义。 溶胶-凝胶自燃合成(Sol-gel Autoignition Synthesis,SAS)是九十年代伴随着高温燃烧合成的深入研究和超纯、超细氧化物陶瓷的制备而出现的一种低成本制备与合成单一氧化物和复杂氧化物的技术。它是指有机盐凝胶或有机盐与金属硝酸盐在加热过程中发生氧化还原反应,燃烧产生大量气体,可自我维持并合成所需燃烧产物的材料合成工艺。它的主要的特点有以下几点:(1):燃烧体系的点火温度低(150℃-200℃),一般为有机物的分解温度;(2):燃烧火焰温度较低(1000℃-1400℃),燃烧时产生大量气体,可获得具有高比表面积的陶瓷粉体。高温燃烧合成燃烧温度一般高于1800℃,合成的粉体粒度较粗,而SLCS则可制得纳米粉末;(3)各组分达到分子或原子水平的复合;(4):反应迅速:燃烧合成一般在几分钟内完成;(5)所合成的粉体疏松多孔,分散性良好;(6):耗能低;(7):所用设备和工艺简单、投资小;(8):自净化:由于原料中的有害杂质在燃烧合成过程中能挥发逸出,所以产品纯度易于提高。 本项目申请者采用SAS技术已经成功地合成了粒度达70nm左右的BaTiO3陶瓷粉体。 广泛应用于制备各种陶瓷电容器、微波器件、铁电存储器、温度传感器、非线性变阻器、热敏电阻、超声波振子、蜂窝状发热体等电子器件。
北京科技大学 2021-04-11
稀土金属的新应用:从氮气直接合成含氮有机物
 目前几乎所有人工合成的含氮有机化合物都需要经过工业合成氨(NH3)。而传统的工业合成氨过程 (Haber-Bosch Process)条件极其苛刻。据推算年耗能占全球能耗的2%左右,需消耗约25%的化石资源,并且产生大量温室气体。因此,将氮气直接、高效、温和地转化为含氮有机化合物,而不经过NH3, 是解决以上问题的重要途径之一。但迄今相关文献报道很少, 催化反应体系还没有实现(见中文综述:从氮气直接合成含氮有机化合物。该研究实现了由稀土金属钪(Sc)促进的,直接由氮气、MeOTf和亲电试剂等有机底物反应高效合成肼衍生物的过程。他们分离和表征了(N2)2−-, (N2)3−-和(N2Me2)2−-Sc中间体,并发现CO能有效插入(N2Me2)2−-Sc中间体的Sc−N键中,实现了N2与CO的高效偶联(Scandium-Promoted Direct Conversion of Dinitrogen into Hydrazine Derivatives via N−C Bond Formation. Ze-Jie Lv, Zhe Huang, Wen-Xiong Zhang,* and Zhenfeng Xi,* J. Am. Chem. Soc. 2019, 141, 8773−8777)。
北京大学 2021-04-11
高性能白光LED用氮化物基荧光粉的燃烧合成制备
本方法采用低成本的氮化燃烧合成工艺制备了可被蓝光或紫外光芯片激发的高性能Eu 2+ 掺杂AlN基蓝色荧光粉,以及Eu 2+ 掺杂的Sr 2 Si 5 N8和Ca 2 Si 5 N 8 红色荧光粉。该方法无需高温长时间加热,工艺简单、成本低、效率高、重复性好、对环境没有污染,适于工业化生产。
西安交通大学 2021-04-11
合成丙二醇、碳酸二甲酯及碳酸丙烯酯的绿色催化
Ø 丙二醇、碳酸二甲酯以及碳酸丙烯酯是重要的有机化学品。丙二醇在食品和医药工业有多种用途,可制聚醚多元醇等。碳酸二甲酯可以用作汽油添加剂、甲基化反应试剂,以及用作合成医药、农药和香料的原料等。碳酸丙烯酯是无毒高效的有机溶剂,也可用于酯交换反应制碳酸二甲酯。现在的市场售价是: 丙二醇11000 - 13000元/吨,碳酸二甲酯(医药级)9000 -10000元/吨,碳酸丙烯酯6000元/吨。我们开展相关课题研究已有3年多,在国内外发表研究论文3篇,并申请获得了日本发明专利一项。使用我们筛选出
北京理工大学 2021-01-12
具有血脑屏障通透性的内吗啡肽衍生肽及其合成和应用
1998 年全球中枢神经系统药物的市场金额为 3.3×108 美元,还不到全球心血管疾病药物市场份额的 1/2,但仅以美国为例,中枢神经系统疾病患者却是心血管疾病患者的大约两倍(Drug Discov. Today, 2002, 7, 223)。引起这种不平衡状态的一个重要原因在于 98%以上的具有潜在治疗中枢神经系统疾病的药物无法穿透血脑屏障。 中枢神经系统与外环境之间存在两重屏障。包括位于脑毛细血管内皮细胞上的血-脑屏障(blood-brain barrier
兰州大学 2021-04-14
一种抗疟剂药物中间体材料的制备及合成工艺
青蒿素是目前为止最热门的抗疟疾特效药,由于它速效和低毒的用药特点,现已作为世界卫生组织推荐的药品。青蒿素从植物的花蕾和叶子中分离提取,但近来因为青蒿素的大肆提取,生态平衡遭到破坏,资源枯竭,所以不宜长久提取;此外,由于患者大多为贫苦地区的人民,购买力低下,承受不起青蒿素高昂的价格。对此,科学家们开始研究新的药物,希望能降低治疗的成本,也可以减少青蒿素的用量,保护生态环境。 在研发新药物的过程中,研究工作者发现一类含 trioxolane 单元的分子药物对于疟疾的抗击有着很好的效果。通过对药物进行改造研究,研究人员得到了药物性能优异的类似物 OZ439。通过口服,OZ439能完全消灭人体当中的寄生虫,现如今 OZ439 的合成已在瑞士进行了中试生产。 本项目是通过廉价的反应材料,经过催化转化制备合成 OZ439的所需重要中间体 HPCH。目前实验室已完成了催化剂的筛选和合成工作,所制备的催化剂在温和的反应条件下可以获得较高收率的 HPCH,其生产成本低于国外药企的要求。 开发计划:催化剂的放大制备及反应工艺的放大研究及优化,催化剂的循环利用和产品的分离及纯化。本项目初期一直与国外药企进行沟通合作,工艺优化后即可进入产业化阶段。 所需条件支持:希望能获得 100 万经费支持与 100m2 实验室支持,用于购置反应评价及催化剂放大制备设备。 
南开大学 2021-04-13
核苷类化合物的合成及其荧光探针性能与抗肿瘤活性
核苷是 DNA 或 RNA 的组成部分,荧光识别在核酸的研究中被广泛应用于荧光光谱法检测,其作为荧光探针的特性取决于可靠性和灵敏度。研究开发制备毒性低、量子产率高及灵敏度高的核苷类作为荧光探针的良好骨架,经过结构修饰的荧光核苷类似物不仅具备良好的发射性,还对周围微环境变化非常敏感。其结构与天然核苷极为相似,具有很好的生物兼容性,插入核酸序列后可代替天然核苷发挥正常的生物功能。
江南大学 2021-04-13
科研进展 | 西湖大学李小波团队发现岩藻黄素合成酶与合成机制
西湖大学生命科学学院李小波团队在The Plant Cell在线发表了题为An unexpected hydratase synthesizes the green light-absorbing pigment fucoxanthin的最新研究论文,报道了"海洋杂色藻岩藻黄素(Fucoxanthin)生物合成途径中末端酶,其催化了岩藻黄素中特征的酮基(keto)的产生"。
西湖大学 2023-05-04
材料的制备方法及提高镁合金抗蠕变性能的方法
本发明公开了一种材料的制备方法及应用该方法提高镁合金抗蠕变性能的方法。将第一基体与第二基体相结合使第一凸起嵌入对应的第二凹槽、第二凸起嵌入对应的第一凹槽,确保在第一凸起与第二凹槽之间形成的空腔以及第二凸起与第一凹槽之间形成的空腔内填充改性粉末;对相结合的第一基体与第二基体进行搅拌摩擦加工,使第一基体、第二基体以及位于空腔中的改性粉末融合为一体并转化为最终材料。该方法生产效率高且所得材料中各物相分布均匀。应用时,所述第一基体和第二基体为镁合金基体,改性粉末与镁合金基体融为一体并且转化为均匀分散于融合后的镁合金基体中的强化相,从而显著提升镁合金的抗蠕变性能。
西南交通大学 2016-10-14
原位合成AlN/Al电子封装材料技术
西安科技大学自2007年开始就对电子封装材料制备技术开始研究,目前已经开发出AlN/Al、SiC/Al系列电子封装材料制备技术。涉及原位合成、无压浸渗、热压烧结等多种制备方法。本项成果为一种原位合成AlN/Al电子封装材料技术,目前此项技术已获批国家发明专利1项。
西安科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 39 40 41
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1