高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
锂离子电池隔膜干法单拉制造技术
  本项目系统全面地研究了采用熔融挤出/热处理/单轴拉伸法(MEAUS)制备锂电池用聚烯烃微孔隔膜的原理,成功地设计制造了国内第一条熔融挤出/热处理/单轴拉伸(MEAUS)法制备锂电池用聚烯烃微孔隔膜的工业化生产线。在此基础上,研发成功了锂离子动力电池PP/PE两层或三层复合隔膜产业化技术。拥有国内唯一动力锂电池隔膜产品的制造技术。
四川大学 2021-04-11
锂离子电池组快速能量均衡技术
本研究成果研究出一种先进的能量管理和能量动态平衡新技术、使电池组使 用寿命(续航能力)成倍增长。 由于锂离子电池具有单节电压低的特点,通常将多节电池串联,构成电池组 使用。而由于制造工艺的原因,单体电池的特性总存在差异,在充(放)电过程 中容易出现部分电池过充或过放的现象,严重影响电池的使用寿命,从而导 致电池组使用寿命缩短几倍甚至十几倍。为了延长电池组的使用寿命,必须 使所有的电池均保持在同样的电池荷电状态(SOC, State of Charge)□因此, 需要建立锂离子电池组能量均衡系统,平衡电池组中各个单体电池的SOC,充 分发挥各单体电池性能,提高电池组使用容量,延长其使用寿命。该项技术已 有大量研究成果,包括有损均衡(被动均衡)和无损均衡(主动均衡)两种方式。 有损均衡是能量耗散型方式,技术趋成熟,已经得到广泛应用(丰田普锐斯混动 汽车)。但其能量全部损耗在电阻上,效率低。无损均衡通过电路对能量进行转 移来实现能量均衡,效率高。但其结构复杂,控制难度大,目前还在研究过程中。 主要问题是均衡速度慢、效率低。本研究成果提出了一种先进的电池组能量均衡 技术一一总线式均衡技术,与其它均衡技术相比,具有电路简单、易于模块化、 均衡速度快、效率高、电路成本不显著增加的特点。特别适用于大功率储能系统。 市场及经济效益分析: 该项技术可以应用于各个领域的储能系统,是智能电网、可再生能源接 入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,不但可以有 效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,提高电力设备运行效率、降 低供电成本,而且还可以调整频率和补偿负荷波动,提高电网运行稳定性。例如, 风力发电与光伏发电互补系统组成的局域网;偏远地区供电、工厂及办公楼供电; 通信系统中不间断电源和应急电能系统;大规模电力存储和负荷调峰系统;电动 汽车的动力系统;国家重要部门的大型后备电源;军事领域中可移动大型供电设 备等。因此,该项技术具有巨大的产业化效益。
重庆大学 2021-04-11
失效锂离子电池全组份绿色回收技术
我国的动力电池即将进入大规模的报废期,失效锂离子电池安全处置与循环利用对于解决资源短缺以及保护环境均至关重要。本团队针对当前失效锂电池再利用过程中亟待解决的关键问题展开研究,开发了具有自主知识产权的无需物理分选绿色回收失效锂电池全组份的集成技术。集成技术包括失效动力电池中电解液及有机组份高效脱除与产品化利用技术、有价组元的高效回收与高值化再利用技术、石墨负极废料深度净化与性能修复技术、失效磷酸铁锂电池经济制备磷酸铁锂正极材料技术。通过该技术,失效锂电池中有机组份脱除率大于 95%,其中氟以化学品形式回收,综合回收率大于 90%,有机组份无害化处置率 100%;以全电池计,对于钴酸锂或三元电池,有价金属镍、钴、锰、铜的综合回收率大于 98%,锂的综合回收率大于 95%,对于磷酸铁锂电池,再生磷酸铁锂材料 1C 放电比容量大于140 mAh/g,生产成本低于国内磷酸铁锂主流工艺的生产成本;再生石墨纯度大于 99.5%,性能满足电池级石墨要求。
北京科技大学 2021-04-13
新型锂离子二次电池有机正极材料
本成果发明的一类芳香杂环酮或酮醌类化合物作为锂离子二次电池正极材料,是以具有芳香杂环酮或酮醌为电化学氧化还原位点的有机化合物,包括芳香杂环酮和芳香杂环酮醌类衍生物。该类化合物以芳香共轭酮或酮醌骨架上的羰基与锂离子的反应为作用机制并以羰基为反应活性位点,酮羰基、酮醌羰基是都是有机化合物正极材料中普遍使用的活性官能团之一,能够用于实现较高的比容量、更正的氧化还原电位和更高的放电电位,并作为高比容量、高循环性能的锂离子正极材料。拥有的自主知识产权情况:ZL201310543181.8;授权公告日:2016年1月13日。项目成熟度:实验室阶段
南京工业大学 2021-04-13
锂离子电池组快速能量均衡技术
无论是从技术或是成本上考虑,电池使用寿命的提高都遇到极大挑战,甚至到了极限。本研究成果研究出一种先进的能量管理和能量动态平衡新技术、使电池组使用寿命(续航能力)成倍增长。 由于锂离子电池具有单节电压低的特点,通常将多节电池串联,构成电池组使用。而由于制造工艺的原因,单体电池的特性总存在差异,在充(放)电过程中容易出现部分电池过充或过放的现象,严重影响电池的使用寿命,从而导致电池组使用寿命缩短几倍甚至十几倍。为了延长电池组的使用寿命,必须使所有的电池均保持在同样的电池荷电状态(SOC,S
重庆大学 2021-04-14
锂离子电池隔膜干法单拉制造技术
本项目系统全面地研究了采用熔融挤出/热处理/单轴拉伸法(MEAUS)制备锂电池用聚烯烃微孔隔膜的原理,成功地设计制造了国内第一条熔融挤出/热处理/单轴拉伸(MEAUS)法制备锂电池用聚烯烃微孔隔膜的工业化生产线。在此基础上,研发成功了锂离子动力电池PP/PE两层或三层复合隔膜产业化技术。拥有国内唯一动力锂电池隔膜产品的制造技术。
四川大学 2015-12-22
高温型锰酸锂锂离子动力电池
目前动力电池主要是钴酸锂锂离子电池,但钴酸锂材料价格昂贵、有毒,污染环境,且世界储量较少。锰酸锂具有大电流充放电、价格便宜(是其的十六分之一)、世界储量大且环保、无毒,是最有可能替代钴酸锂的下一代锂离子电池材料。
西南交通大学 2016-06-28
锂离子电池负极用SBR粘结剂
多官能基变性SBR (丁苯橡胶) 胶乳作为粘结剂拥有最优异的性能,已经成为锂离子电池最主流的粘结剂。我国在锂离子电池用特种SBR领域的研发方面还处于相当落后的状态,知识产权方面基本上是空白,这些材料被日本个别企业长期垄断。现阶段主要依赖从日本进口,价格十分昂贵。锂离子电池石墨负极粘接用多官能基变性丁苯胶乳不同于通用的SBR胶乳,产品性能要求特殊,物性指标十分苛刻。在国际上掌握锂离子电池用SBR胶乳聚合生产技术的是为数不多的日本企业,如日本合成橡胶和日本瑞翁等。我国在锂电用特种SBR领域的研
南京工业大学 2021-01-12
新能源锂离子电池智慧消防系统
项目背景:在传统的消防系统中,探测器、控制器等产 品都是通过 RS485、局域网或者 GPRS 等方式传输信号,施工 复杂,维护也困难。即使应用了无线技术,由于设备本身功 耗大,必须频繁得更换电池。这些情况在现有的消防系统中 非常常见,往往由于网络传输问题或者设备电量不足延误报 警信号的传输,造成严重后果。近年来,消防安全管理正逐 步从信息化、数字化向网络化、智能化方向发展,建设智慧 消防已经成为大势所趋。该研究对服务场所进行全天候监 控,通过探测器,控制器以及基于物联网模式搭建的网络消 防平台,可监控服务场所的火灾情况、温度变化,可燃气体 浓度等,并将消防信息无线上传至云管理平台端;同时平台 自动启动相应联动视频监控,辅助确认火情灾情;此外,平 台还可第一时间通过,手机 APP、语音电话等告知责任人, 快速形成“技防+人防”的火灾综合防控力,将火情有效控 制在萌芽状态。一是通过应用 5G 技术,实现各类传感器需 要具有超低功耗的传感技术,实现广覆盖,要求信号穿透力 更强,具备较长的生命周期且传输性能稳定;二是通过物联 网跨平台开发,将智慧消防的系统软件,实现多平台的适配, 既能在移动设备上实现,又需要在固定设备上实现,并解决 数据冗余,提高效率。 所需技术需求简要描述:1.低功耗传感器及其它零部件 的选型,程序控制,保证使用周期能达到 4 年以上。2.覆盖能力强,抗干扰能力强,在网络信号薄弱区域不增加功耗, 保证运行周期。3.跨平台的应用开发,数据存储安全可靠, 解决数据冗余,运行高效。  对技术提供方的要求:1.具有物联网及自动化设计专业 能力,具有成功的实施案例,有专业有经验团队。2.熟悉产 品结构设计,熟悉产品信息化、自动化设计。3.团队带头人 须具有正教授职称,合作方须为专业工科院校,结合实际, 技术方案成熟可靠稳定有创新思维,不涉及知识产权侵犯。 
青岛中阳消防科技股份有限公司 2021-09-10
新型储氢材料 、 全固态锂离子电池材料
本团队先后承担了北京市自然科学基金项目二项、国家自然基金项目二项以及国际合作项目一项。针对氢燃料汽车的氢储存问题,目前研发出了新型镁基复合储氢材料,其储氢量(达 6.0wt.%以上)已经超过美国能源部所要求的储氢量指标(5.5wt.%),具备了实际应用价值。在全固态锂离子电池材料研究领域,本团队还与加拿大西安大略大学孙学良院士合作,开展新型全固态锂离子电池材料研究。目前通过界面改性显著提高了全固态锂离子电池的高倍率放电性能及寿命,相关成果发表在《ACS AppliedMaterials & Interfaces》等期刊上。一种高容量储氢材料;一种高容量长寿命全固态锂离子电池材料的改性技术。
北京科技大学 2021-04-13
首页 上一页 1 2 3 4 5 6
  • ...
  • 82 83 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1