高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种稀土铁基吸波材料及其制备方法
本发明公开了一种具有良好吸波性能的纳米晶稀土铁基吸波材料及其制备方法,该材料的特征在于 将配比为重量百分比为2%~70%稀土元素与5%~98%的铁以及少量掺杂元素熔炼成稀土-铁基合金,再在 0-700℃的温度范围内与氢气反应(氢爆方法)破碎成细小粉末或球磨成细小粉末,然后在100℃-1000℃ 温度范围内与氢气反应生成主相为稀土氢化物(RHx)和α-Fe的复合材料,最后将上述复合材料在低温 氧化或氮化或氮化加氧化,制备出稀土氧化物或氮化物/α-Fe为主的复合材料。这种材料具有吸波性能好, 屏蔽波段宽,耐腐蚀,抗氧化以及价格低廉的特点,可用于建筑电磁屏蔽、信息及通讯技术保密、军事隐 身技术等领域。
四川大学 2021-04-11
一种防腐耐磨铁基非晶薄膜及其制备方法
本发明公开了一种防腐耐磨铁基非晶薄膜及其制备方法,其包 括的成分及该成分的原子百分比含量分别为:14.0~22.0at.%Cr,6.0~ 16.0at.%Mo,4.0~7.0at.%B,4.0~20.0at.%C,0.0~3.0at.%W 以及余 量的 Fe。其制备方法包含 S1 制备单一合金靶材;S2 选择衬底材料, 将衬底表面进行平整化,然后清洗并吹干待用;S3 进行磁控溅射,其 中,背景真空度值不高于 5x10<sup
华中科技大学 2021-04-14
铜基量子自旋液体的候选者和铜基高温超导材料母体在掺杂后的电子结构
刘奇航及其合作者以最近由中科院物理所领衔的研究团队发现的ZnCu3(OH)6BrF为例,采用修正后的单体平均场密度泛函理论方法,对这一体系的本征和掺杂行为进行了详尽的模拟。研究发现,ZnCu3(OH)6BrF掺杂后,掺入的电子并没有成为期待的“自由载流子”,而是局域在一个铜原子周围,引起了局域形变。这种电子与束缚它的晶格畸变的复合体称为极化子(如图一所示)。本征材料的带隙中形成新的电子态。因此,电子掺杂后,ZnCu3(OH)6BrF并没有实现半导体到导体的转变。相比之下,具有类似CuO4局部环境的铜氧化物高温超导体的母体材料Nd2CuO4显现除了不同的随掺杂浓度变化的导电性。研究发现,低掺杂浓度时,铜原子附近形成较为扩展的极化子,因此在高掺杂浓度时,这些极化子之间的跃迁可以使系统导电性大大增加,实现半导体到导体的转变,与实验观测很好地吻合。 该研究圆满地解释了最近实验上观测到的Kagome晶格的锌铜羟基卤化物在掺杂后并不导电的现象,指出要在量子自旋液体实现超导,仅仅找到量子自旋液体体系是远远不够的,还必须实现有效掺杂,注入一定浓度的“自由载流子”,为耕耘在该领域的实验工作者提出了新的挑战和实验方向。
南方科技大学 2021-04-13
一种含铁富锂锰基正极材料的制备方法
一种含铁富锂锰基正极材料制备方法,属于锂离子二次电池正极材料领域。本发明采用“共沉淀-混料-煅烧”工艺制备含铁富锂锰基正极材料,制备方法如下:采用沉淀剂与可溶性铁盐和其它过渡金属盐的混合溶液进行共沉淀反应,生成前驱体;前驱体与锂化合物混合后,直接煅烧,制备出含铁富锂锰基正极材料。该方法优点在于简化了目前含铁富锂锰基正极材料制备工艺“共沉淀-混料-水热合成-煅烧”中的水热工序,有利于降低含铁富锂锰基正极材料的制备成本。
四川大学 2021-04-11
一种铁基非晶及纳米晶合金的成型方法
本发明公开了一种铁基非晶及纳米晶合金的成型方法,属于增 材制造领域。采用微喷射粘结成型方法将铁基非晶混合粉末或纳米晶 合金混合粉末制备成坯体,然后烧结坯体获得制品。铁基非晶混合粉 末或纳米晶合金混合粉末中均匀混合有粘结剂。烧结采用的温度高于 粘结剂的熔点 5℃~10℃,同时低于铁基非晶粉末相变温度或纳米晶 合金粉末相变温度。本发明方法能够用来制备大尺寸复杂形状块体铁 基非晶及纳米晶合金制品。 
华中科技大学 2021-04-14
高密度铁基粉末冶金制品制备关键技术研究
针对我国高品质粉末冶金铁基材料制备技术较薄弱的问题,在高品质铁基粉末和高性能铁基制品制备技术方面取得了突破。以 LAP100.29 水雾化铁粉作为高密度低合金粉末基粉,添加母合金粉末、增塑剂经塑化处理后,再添加专用润滑剂和石墨进行混合。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末(图 7)。合批粉末的松比为 3.2~3.4g/cm3,流动性≤30s/50g,压缩性≥7.6g/cm3,粉末显微组织如图 2 所示。在混粉阶段,设计制作了 5 吨/h 专用连续式混合装置(如图 6 所示),通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,合批制成高密度专用粉末,从而实现粘结化粉末的连续、稳定的批量化生产。
北京科技大学 2021-02-01
两步法退火制备钽钪酸铅基铁电薄膜的方法
一种两步法退火制备钽钪酸铅基铁电薄膜的方法,工艺步骤包括制备过渡层、制备钽钪酸铅基铁电薄膜、钽钪酸铅基铁电薄膜的退火处理;钽钪酸铅基铁电薄膜的退火处理是将钽钪酸铅基铁电薄膜放入退火炉内,在氧气流中以40℃/秒的升温速率升温至800℃~850℃后即刻停止加热,使其随炉冷却至500℃~600℃保温3分钟~5分钟,然后随炉冷却至室温。采用上述方法制备的钽钪酸铅基铁电薄膜钙钛矿相纯度可达100%,结晶性能好,表面均方根粗糙度较低,而且还具有剩余极化强度高和高度择优取向的特点。
四川大学 2021-04-11
高水头、高流速下水力机械耐空蚀及磨蚀铁基合金
南京工程学院 2021-04-13
高密度铁基粉末冶金制品制备关键技术研究
针对我国高品质粉末冶金铁基材料制备技术较薄弱的问题,在高品质铁基粉末和高性能铁基制品制备技术方面取得了突破。以 LAP100.29 水雾化铁粉作为高密度低合金粉末基粉,添加母合金粉末、增塑剂经塑化处理后,再添加专用润滑剂和石墨进行混合。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末(图 7)。合批粉末的松比为 3.2~3.4g/cm3,流动性≤30s/50g,压缩性≥7.6g/cm3,粉末显微组织如图 2 所示。在混粉阶段,设计制作了 5 吨/h 专用连续式混合装置(如图 6 所示),通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,合批制成高密度专用粉末,从而实现粘结化粉末的连续、稳定的批量化生产。图 1 连续式混粉装置图 2 水雾化铁粉和预处理后粉末显微组织基于粉体塑性特性和改性原理,通过优化粉体粒度组成、改善粉体塑性变形能力,再结合高密度成形技术制备出高密度铁基制品。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末。在混粉阶段,设计制作了连续式混合装置,通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,实现粉末的连续、稳定的批量化生产。压制过程中,采用多模板多缸联动和计算机自动精确控制技术,提高压坯密度均匀性; 通过模壁润滑,降低粉末颗粒与模壁之间的外摩擦力,提高了压坯密度及其均匀性。采用高密度成形技术制备出密度为 7.5~7.55g/cm3 的高密度铁基制品,其抗拉强度、延伸率和疲劳强度都比普通铁基材料显著提高,具有综合力学性能优异,尺寸精度高,使用寿命长等优点,如图 8 所示。开发的高密度粉末冶金同步器系列及链轮系列等产品,已经通过了吉利集团、湖州求精、德尔福等公司的供货评审,目前已形成批量供货,项目期内实现产值 860 万元,利税 120 万元,如图 2 所示。建立了年产 5000 吨高密度铁基制品生产线,如图 4 所示。图 3 高密度铁基制品的拉伸曲线和疲劳性能图 4 典型的高密度铁基制品利用 δ 相烧结制备出接近全致密(>99.9%)的铁基软磁零件。利用加 P 液相烧结,大幅度降低了烧结温度,缩短烧结时间。在 1200C 烧结 2 小时,Fe-0.8%P 的相对密度可以达到为 98.5%。制备的铁基软磁材料的烧结致密度≥96%;磁导率(μm)≥6000,饱和磁感应强度≥1.6T,矫顽力≤110A/m。图 9 是烧结温度对高密度样品最大磁导率和矫顽力的影响规律。随着烧结温度的升高,高密度纯铁样品的磁导率提高,同时矫顽力下降;当烧结温度达到 1450°C 时,样品的磁性能有显著提高,如图 10 所示。升高温度可以进一步提高材料的致密度,并促经晶粒的长大完善,进而提高材料的磁性能,如图 11 所示。采用 HIP 和后续热处理工艺,制备出全致密的铁基软磁材料,能够进一步提高材料的磁性能。
北京科技大学 2021-04-13
锡烯超导研究
超导体临界磁场是指在外加磁场下超导态转变成正常态所需的磁场强度。它是超导的基本性质之一,也是决定超导体应用的一项重要指标。第一个被发现的超导体——水银,它的临界磁场仅有几十毫特斯拉。近年来人们发现,某些厚度仅有几个原子层的薄膜可以在几十特斯拉的磁场下保持超导,这大大超出了人们的预料。为了解释这个现象,人们提出了伊辛配对机制,认为这是由于这一类特殊材料的晶格不具备中心反演对称性,参与超导配对的电子具有了锁定的自旋取向所致。在此框架下,人们通过在非中心对称的材料中寻找,又发现了多个具有巨大临界磁场的超导体。然而,也有人认为这完全是材料维度效应所导致的,挑战了伊辛配对机制。同时,伊辛超导理论的一个重要预言——临界磁场的低温发散行为也一直未被实验验证。最近,清华大学物理系张定副教授和薛其坤教授领导的中德合作团队,打破了此前理论的限制,首次在具有高对称性的材料——锡烯薄膜中观测到了数倍于理论预期的临界磁场,并清晰地观测到了温度逼近绝对零度时临界磁场的发散行为,给出了伊辛超导非常强的证据。北京时间3月13日,相关研究成果以《锡烯薄膜中的第二类伊辛配对机制》(“Type-II Ising pairing in few-layer stanene”)为题在线发表于《科学》(Science)上。图1. 实验测得的锡烯超导中奇异的上临界磁场行为。颜色代表样品的电阻(紫色区间为正常态,深蓝色区间为超导)。圆圈标出了不同温度下的上临界磁场。实线和虚线代表了不同的理论模型,其中红色为本工作中提出的第二类伊辛配对机制。左下和右上的示意图分别画出了锡烯的原子结构和能带。薛其坤教授研究团队长期从事原子级可控的高质量薄膜的制备和物性探索,在二维超导领域发现了单层铅膜超导、单层铁硒/钛酸锶界面高温超导和双原子层镓膜超导的格里菲斯奇异性等。2018年,团队核心成员张定副教授等人首次发现灰锡薄膜—锡烯—具有超导电性( 《自然-物理》Nature Physics, 14,344(2018)),随后发现其面内上临界磁场超过了常规超导体的上限—泡利极限。为了进一步深刻理解锡烯的二维超导特性,研究团队与德国马普固态研究所的约瑟夫-福森(Joseph Falson)博士和尤根-斯密特(Jurgen Smet)教授合作,利用极低温强磁场下原位旋转测量技术,系统测量了不同厚度锡烯样品在近乎整个超导温度区间上临界磁场的变化行为,发现上临界磁场不仅超出泡利极限,而且在温度逼近绝对零度时仍无饱和迹象,这是典型的伊辛超导行为。由于锡烯具有中心反演对称性,这些行为不能用现有的伊辛超导理论解释。为了理解这一令人困惑的现象,清华大学物理系徐勇副教授和北京师范大学刘海文研究员等开展了深入的理论研究。论文链接:https://science.sciencemag.org/content/early/2020/03/11/science.aax3873
清华大学 2021-04-10
首页 上一页 1 2 3 4 5 6
  • ...
  • 81 82 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1