高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种无监督的跨受试者适应方法,用以预测未被标记信号的目标受试者的运动意图
一种无监督的跨受试者适应方法,用以预测未被标记信号的目标受试者的运动意图,将受试者和研究人员从标记大量数据中解放出来。 准确预测人体运动意图有助于控制可穿戴机器人在不同地形上的运动,从而辅助人类平稳行走。传统的预测人类运动意图的方法需要收集和标记人体信号,并训练每个新受试者使用特定的分类器,这给受试者和研究人员都带来了繁重负担。
南方科技大学 2021-04-14
一种通过scout ESI和CNN解码EEG运动想象四分类任务的新方法
导读东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法,以对运动想象(MI)任务进行分类。ESI技术采用边界元法(BEM)和加权最小范数估计(WMNE)分别解决EEG的正向和逆向问题。然后在运动皮层中创建十个scout来选择感兴趣的区域(ROI)。研究者使用Morlet小波方法从scout的时间序列中提取特征。最后,使用CNN对MI任务进行分类。实验结果:在Physionet数据库上的整体平均准确率达到94.5%,分别对左拳头、右拳头、双拳和双脚的单个准确率达到95.3%、93.3%、93.6%、96%,采用十倍交叉验证进行验证。研究人员表示,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者为验证方法的有效性,加入了4个新的受试者进行验证,发现总体平均准确率为92.5%。此外,全局分类器适应单一对象,整体平均准确率提高到94.54%。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。系统框架图1 系统框架图系统框架如图1所示。原始数据来自国际10-10系统的64个电极(不包括Nz、F9、F10、FT9、FT10、A1、A2、TP9、TP10、P9和P10电极),并以每秒160个样本的速度采集。根据国际10-10系统从64个通道采集原始脑电图,并使用BCI2000系统进行记录。记录的数据被分为四个独立MI任务包括左拳MI,右拳MI,双拳MI和双脚MI。首先,由于ERD在执行运动想象时在alpha和beta中不同,因此使用FIR滤波器对EEG进行了8 Hz至30 Hz的带通滤波。然后,通过计算包含正问题和逆问题的源,将传感器空间的活动转化为源空间的活动。接下来,创建scout并提取特征。研究者在运动皮层中创建了10个scout,因为我们只关心与运动相关的活动。十个scout中的每一个都代表了可用源空间中的一个感兴趣的区域(ROI),并且是定义在皮层表面或头部体积上的偶极子的子集。左脑的scout称为L1、L2、L3、L4、L5,右脑的scout称为R1、R2、R3、R4、R5。利用JTFA从10个scout的源时间序列中提取特征。最后,利用CNN对时频图进行分离并进行分类。实验在实验中,研究人员仅使用了随机选择的十个受试者的MI trail (S5,S6,S7,S8,S9,S10,S11,S12,S13,S14)。这里用于分析的数据集包含每个受试者84次试验,每一类包含21次试验。在记录64通道脑电图时,受试者执行了不同的运动想象任务。每个受试者针对以下四个任务中的每一个执行了3轮21试验:当目标出现在屏幕左侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕的右侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕顶部时,受试者想象打开和合上双手的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕底部时,目标会想象双脚张开和合拢,直到目标消失。然后受试者放松。为了统一数据维数,研究者选择了4s的数据,因为每次想象任务的执行时间都在4s左右。此外,脑电图任务是分开的,研究人员在实验中将左拳,右拳,双拳和双脚MI任务分别称为T1,T2,T3和T4。图2 scout命名左右运动想象的scout分别命名为L1、L2、L3、L4、L5、R1、R2、R3、R4、R5,如图2所示。10个scout每一个都被扩展到40个顶点,每个顶点只有一个源。L1区域对应40个信号,其他scout也一样。在计算了来源后,研究者在运动皮层中创建了十个scout,如图3所示。图3 创建10个scout使用ESI计算十个受试者(S5、S6、S7、S8、S9、S10、S11、S12、S13、S14)每次试验的四个任务(T1、T2、T3、T4)的源。对于这四项任务中的每一项,每个受试者每次都要进行7次测试(#1,#2,#3,#4,#5,#6,#7)。展示了第一个步的10个被试的10个scout的4项任务的来源。然后提取10个scout的时间序列进行进一步分析。特征提取在计算源之后,研究人员在运动皮层中创建了包含40个源的10个scout,并提取了scout的时间序列。如图4所示为提取R5 scout时间序列作为示例。图的右边显示了R5 scout的时间序列。本文利用小波变换从scout时间序列中提取特征。图4 提取R5 scout时间序列作为示例在这项研究中,研究者提出利用CNN来解决运动想象任务分类的问题。该模型基于Schirrmeister等提出的Deep ConvNet架构,该网络模型由一个六层卷积网络组成,其中两个最大池层和三个全连接层,如图5所示。图5对于Physionet数据库,研究者首先采用Deep ConvNet架构,包括四个卷积层、四个最大池层和一个全连接层。在实验中,研究者依据经验使用两个最大池化层。并尝试了不同数量的卷积层和完全连接层。时频图利用Morlet小波方法得到了scout的特征。对于每个任务,R5 scout的时频图如图6所示。包含时间和频率互补的时频分析方法提供了时域和频域的联合分布信息,清晰地描述了信号频率与时间的关系。图6 R5 scout的时频图显然,只有部分时频映射是红色的,表明每个任务只对特定的频率和时间敏感。由于图的数量比较大,研究者使用CNN来选择和学习这些图中最基本的特征。研究人员随机选择了几个样本,并将一些特征图可视化,作为MI任务的学习表示,如图7所示。图7为了获得有效的结果,将数据集分为90%作为训练集,其余10%作为测试集。首先,将十个受试者的数据集(总共19320个样本)分为17388个样本以训练所提出的CNN模型,以及1932个样本以验证模型的有效性。在实验中,研究者还选择了另外四个受试者的数据集以增加数据集的规模(27048个样本),其中24343个样本是训练集,其他样本是测试集。在选定的scout上对所提出的CNN架构进行了十次训练和测试,以验证所提出模型的鲁棒性。图8(a)显示了10个scout中每个的全局平均精度。图8 统计结果R5的全局平均精度最高,达到94.5%,而L2的全局平均精度最低,为91.3%。对应L1、L3、L4、L5、R1、R2、R3、R4的整体准确率分别为92.4%、92.5%、93.6%、91.9%、93.0%、91.8%、92.1%、92.6%。所有scout的总体精度均在91%以上,标准差均在0.20%以下。图8(b)显示了十个scout中每个scout四个MI任务的组级统计结果及其标准差。一般来说,R5表现的要比其他的好,而L2在迭代2000中表现最差。标准差较小,说明这些精度更接近平均值且稳定。图9 统计结果图9(a)显示了带有标准差的混淆矩阵,说明了group level分类结果。T1、T2、T3和T4的全局平均精度峰值分别为95.3%、93.3%、93.6%和96.0%。R5 scout的四个MI任务中的每一个都如图9(b)所示。通过改变训练集和测试集顺序的10次试验,确定了scoutR5的性能,结果如图10(a)和(b)所示。在10次试验中,scout R5的T1、T2、T3、T4的平均准确率分别为93.3%、93.8%、94.2%、94.1%。换句话说,四个任务中每一个的平均准确率都超过了93%。全局平均准确率为93.7%。10次试验结果表明,该方法对scout R5的分类效果较好。从以上结果可以清楚地看出,R5 scout在四种MI任务的分类中扮演着最重要的角色。因此,选择R5对四个MI任务进行分类。图 10图11. (a)是不同模型的全局平均准确性的比较。可以发现,该研究提出的模型可以达到最大的精度。从图11. (b)不同模型的ROC曲线可以看出提出的模型比其他模型表现更好。©不同模型T1上的精度比较。(d)不同模型T2的精度比较。(e)不同模型T3的精度比较。(f)不同型号T4的精度比较。图11 不同模型的精度比较结论东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法。该方法可以对运动想象(MI)任务进行分类。实验结果表明,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者加入了4个新的受试者进行验证来验证方法的有效性。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。论文信息:A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN
东北电力大学 2021-04-10
一种跨平台乡村旅游APP的实现方法与装置
本发明提供一种跨平台乡村旅游APP的实现方法与装置,所述方法包括:S1,基于乡村旅游的视图层业务需求,利用AppCan跨平台技术框架,采用html5+css3+JavaScript构建乡村旅游APP的用户交互界面;S2,基于乡村旅游的数据层业务逻辑需求和所述用户交互界面,利用AppCan跨平台技术框架,通过手机系统统一接口webview,构建乡村旅游APP的移动业务逻辑;S3,基于与后台服务器的信息访问需求,利用AppCan跨平台技术框架,构建APP客户端与所述后台服务器的信息交互逻辑。本发明能够有效提高应用代码复用率和开发的效率,并能有效降低开发者劳动强度。
中国农业大学 2021-04-11
企业信息资源管理与数据质量控制平台
数据是企业的重要资源,数据质量则是体现其价值的关键。大多数企业已建立的众多的基础专业数据库、信息资源管理系统,并完成的数据仓库建设,但是对数据与信息的质量、新数据是否上来以及上来及时性等缺乏有效的监控手段;同时,已有信息资源往往被分散的保存着,其管理维护乃至数据库的变更都难以掌控。本系统基于元数据、元结构、元知识模拟专家对于数据与信息资源的管理策略,利用机器学习、自然语言处理以及知识库技术,实现了基础数据资源监控与管理,建立了基础数据资源动态监控与质量巡检系统。系统主要功能包括: 元数据管理 建立和管理包含所有基础数据库结构信息的元数据库,使对各个基础库中的最新数据项和数据项变更历史等有一个全面的掌控;同时也为今后建立在基础库之上的应用和对数据库的维护打下良好的基础。 重要基础数据的采集监控 对各基础数据库中的重要数据是否及时采集入库及基础数据的删除进行定期的监控,并对监控的结果给出相关结论报表,以便及时了解各基础库数据的数据增删情况。 数据质量巡检子系统 定期地对各基础数据库中的重要数据项进行质量检查,监控各数据项中的数据是否满足给定的规则条件,对于不符合条件的数据通过提供的预警机制进行预警。 本技术可用于通信、能源、交通、政府、国家中医药管理局、医疗机构、冶金行业、石油石化等行业。
北京科技大学 2021-04-11
全时空融合定位及用户行为分析挖掘大数据平台
研究背景及挑战:高精度无缝位置服务是智慧生活的关键技术之一, 也是实现以人为中心的智能情境感知技术基础。然而, 复杂城市峡谷(高楼、天桥、隧道)地区连续导航、室内外高精度无缝定位由于卫星信号频繁受到阻隔、室内布局动态变化等因素,实现连续高精度全空间定位存在诸多挑战。本科研团队研究内容:基于团队在 Wi-Fi, ZigBee, INS、图像、超声波、声音、RFID 等多种定位技术科研成果,研发高精度、低功耗、低成本、易部署的多源融合定位云平台,提供全时空位置服务及用户行为挖掘服务平台。融合定位云平台体系框架全时空定位服务平台上下文突破弹性导航软硬件架构及理论体系基于因子图多源融合定位算法科研基础:国家重点研发计划项目“自适应导航软硬件技术”、高精度高鲁棒性室内定位关键技术及装置研究(863)、无线传感网络定位技术研究(NSFC)、基于众包和群智计算的室内无线定位理论和方法 (NSFC)、自适应室内无线信号变化的低代价高精度定位技术研究(NSFC)等项目的支持下,已完成全时空融合定位云平台,以及用户行为挖掘大数据平台建设。 科研成果:1中国卫星导航定位科技进步一等奖2 获UbiComp交通模式识别比赛冠军3获阿里巴巴天池世界比赛冠军4 制定国家实时定位标准6项5 发表中科院一区顶级SCI期刊论文 10 篇6 获得国家发明专利授权 20项,申请国家发明专利 32项7 国际 IPIN2016 室内定位比赛第3名 成果应用案例:华为、三星、中国电信集成、华大电子、22所等
北京邮电大学 2021-04-10
全时空融合定位及用户行为分析挖掘大数据平台
研究背景及挑战: 高精度无缝位置服务是智慧生活的关键技术之一, 也是实现以人为中心的智能情境感知技术基础。然而, 复杂城市峡谷(高楼、天桥、隧道)地区连续导航、室内外高精度无缝定位由于卫星信号频繁受到阻隔、室内布局动态变化等因素,实现连续高精度全空间定位存在诸多挑战。 本科研团队研究内容: 基于团队在 Wi-Fi, ZigBee, INS、图像、超声波、声音、RFID 等多种定位技术科研成果,研发高精度、低功耗、低成本、易部署的多源融合定位云平台,提供全时空位置服务及用户行为挖掘服务平台。 融合定位云平台体系框架 全时空定位服务平台上下文 突破弹性导航软硬件架构及理论体系 基于因子图多源融合定位算法 科研基础: 国家重点研发计划项目“自适应导航软硬件技术”、高精度高鲁棒性室内定位关键技术及装置研究(863)、无线传感网络定位技术研究(NSFC)、基于众包和群智计算的室内无线定位理论和方法 (NSFC)、自适应室内无线信号变化的低代价高精度定位技术研究(NSFC)等项目的支持下,已完成全时空融合定位云平台,以及用户行为挖掘大数据平台建设。   科研成果: 1中国卫星导航定位科技进步一等奖 2 获UbiComp交通模式识别比赛冠军 3获阿里巴巴天池世界比赛冠军 4 制定国家实时定位标准6项 5 发表中科院一区顶级SCI期刊论文 10 篇 6 获得国家发明专利授权 20项,申请国家发明专利 32项 7 国际 IPIN2016 室内定位比赛第3名   成果应用案例: 华为、三星、中国电信集成、华大电子、22所等
北京邮电大学 2021-05-09
面向精神科临床研究的业务过程与数据集成平台
该项目是精神病学与精神卫生学临床、软件工程和数据工程交叉方向,探讨临床研究业务过程与数据一体化集成平台的建设与实施,优化临床研究数据采集、存储、交换、可视化和分析决策,为临床研究提供更科学更高效的支撑方法与手段。
北京大学 2021-02-01
全国高校科技成果对接服务平台-研究咨询服务
组织院士专家赴各地把脉问诊、座谈调研、对接交流等活动,让专家资源嵌入城市创新发展之中,为地方经济发展提供智力支撑。
云上高博会 2021-07-22
大规模城市三维点云智能处理基础支撑平台
一、项目简介 激光扫描系统能够直接获取被测目标表面的三维空间坐标,具有采样密度高、点云分布密集等特点,正逐渐成为三维空间信息快速获取的主要手段之一,被广泛应用于文物保护、三维重建、数字地面模型生产、城市规划等领域。团队拥有世界上最先进的车载和静态地面激光扫描系统,具备在城市、海岸带、矿山等环境条件下获取三维点云数据的能力。通过研发点云分割、点云智能量测、三维目标提取、点云分析、三维场景
厦门大学 2021-01-12
一种海底仪器用的水下数据传输平台
本实用新型涉及一种海底仪器用的水下数据传输平台,属于海洋监测技术领域,其包括安装架及安装在安装架上的控制单元、供电电池组、浮体、用于容纳海底仪器的仪器舱与用于容纳供电电池组的电池舱;还包括安装在安装架上的分离单元、配重单元及两个以上的浮筒单元。其可搭载海底仪器对海底水文数据进行收集,并通过浮筒单元及时地将收集的数据携带至水面,并与卫星进行数据传输,并且在使用后可对大部分结构进行回收再利用,可广泛地应用于海底水文数据的收集。
浙江大学 2021-04-13
首页 上一页 1 2
  • ...
  • 117 118 119
  • ...
  • 137 138 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1