高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
RhoGDI的抑制剂发现
首个针对 RhoGDI的抗肿瘤迁移药物先导化合物 
中国科学技术大学 2023-05-19
非对称透镜的研究开发
通过国家“七五”、“八五”项目的带动,开发出了一套设计,计算及加工非球面透镜的方法,在彩色显像管曝光工程中已得到应用。 
西安交通大学 2021-01-12
技术需求:基因载体的优化
1、在安全性提高的前提下,基因载体的优化制备; 2、怎样提高载体在生物体内利用度; 3、细胞膜毒性的进一步降低 4、新靶标抗原CAR构建; 5、细胞因子风暴处理
山东翰康生物科技有限公司 2021-09-01
马铃薯试管薯的贮藏技术
该技术通过变温贮藏解决了试管薯贮藏问题,是目前国内外首个试管薯贮藏技术,可使试管薯贮藏6个月以上,可用于马铃薯试管薯、微型薯以及其他试管块茎块根种薯的长期贮藏。需要低温库和20度恒温库1个。 该技术可以有效解决含水量高的块根块茎类种薯贮藏的烂种问题,使其损失率从原来的40%下降到10%以下。 转化条件:需要低温库和20度恒温库1个。 成果完成时间:2016年12月
华中农业大学 2021-01-12
提高柑橘果实香味的技术
该技术涉及一种提高柑橘果实香味的方法,以柑橘野生种质——莽山野柑为父本,以不同柑橘品种为母本,通过授粉的方法提高柑橘果实香味。所述不同柑橘品种选自种子为单胚的种质,例如华农红柚。目前提高柑橘果实香气的方法一般都是通过外界因素控制,例如储藏、采收期、田间管理和环境条件的调节等,但是从根本上提高柑橘果实香气的方法并未见报道。发明人在偶然的过程中发现了莽山野柑旁边的枳橙呈现出莽山野柑果实特有的香味,并进一步研究,发现以莽山野柑为父本可以显著提高柑橘果实香味,从而进一步提高果实的品质性状。 市场预期:现有增加柑橘香气物质含量的技术具有条件要求严格、耗费人力物力较多、成本较高、提高香气效果不稳定等问题。授莽山野柑花粉的研究对果树的生产有重要的现实意义,通过选择合适的授粉树能够有效提高果实的品质性状,具有从根本提高果实香气、操作简便、成本较低等优点,同时不受地点、设备和环境等限制,具有长期的效益。 成果完成时间:2015年8月
华中农业大学 2021-01-12
直条形白茶的制作技术
该成果增加了传统白茶加工中没有的杀青、做形工艺,并以蒸汽杀青代替新工艺白茶加工过程中滚筒杀青,更有利于造形以及提高白茶的品质,同时降低了贮藏和运输成本,便于消费者携带,更有利于扩大白茶的消费市场。该成果对生产设备要求不高,生产成本较低,操作简单,可操作性强,易于推广,同时缩短了加工时间,提高了生产效率,改善了传统白茶香低味淡的特点,能消除传统白茶的青气和酵气,使之具有外形条索紧结秀美;香气清新纯正;汤色杏黄明亮;滋味醇厚爽口的特点。 该成果具有较好市场前景。 成果完成时间:2016年
华中农业大学 2021-01-12
丹参素的生物合成技术
成果与项目的背景及主要用途 : 丹参素是一种天然植物多酚酸,是中药丹参的主要水溶性活性成分。丹参及其制剂(如复方丹参滴丸、复方丹参片等)、丹参素的衍生物丹酚酸 B 和丹酚酸注射液已经批准,广泛用于临床治疗心血管疾病。丹参素是丹参及其制剂国家药典规定的质量控制指标。丹参素的药理活性包括具有改善血流、抑制血小板活化和动脉血栓形成,还具有抗癌和抗炎等活性。我们研究还发现,丹参素具有清除活性氧和活性氮的作用,是一种高效的抗氧化剂。丹参素清除羟基自由基和超氧阴离子自由基活性,高于维生素 C。因此在医药、保健品、食品等方面具有很大应用潜力。 目前丹参素主要从药材丹参中提取,然而丹参根中含量低(一般 0.045%),严重制约了丹参素的大规模应用。化学合成丹参素存在着步骤繁琐,立体选择性不高。采用合成生物学技术构建工程微生物,通过发酵方法生产丹参素是一种很好的替代方法。 技术原理与工艺流程简介: 本技术采用合成生物学策略,挖掘大量的天然生物元件,创新组合了功能酶,设计了非天然存在的从葡萄糖到丹参素的生物合成途径,构建丹参素的人工细胞工厂。实现了葡萄糖为原料,发酵生产丹参素。发酵 72 小时,积累丹参素 7 克/升以上,对葡萄糖的摩尔转化率为 0.47,达到国际领先水平。 技术水平及专利与获奖情况: 截止目前,丹参素的生物合成途径一直未见报道,天津大学唯一拥有该技术。 应用前景分析及效益预测: 微生物发酵生产丹参素,得率高,工艺简单,成本低,唯一的拥有该技术,市场竞争力强。 应用领域:医药、食品、保健品等领域。 合作方式及条件:寻求技术转让或新产品合作开发
天津大学 2021-04-11
高纯度银杏内酯的制备
成果与项目的背景及主要用途 在天然植物药的开发中,银杏叶的现代药用研究无疑是热点之一。 七十年代初,德国首先用溶剂萃取的方法大规模生产具有明确质量标准的银杏叶提取物 EGb761,为黄酮甙(含量在 24%以上)和萜内酯(银杏内酯和白果内酯的总和,含量在 6%以上)的混合物,并以此开发成了疗效显著、稳定的治疗心脑血管疾病的单方植物药,成为欧洲最为畅销的药品,引起了国际医药界极大的关注。 目前国内外上市的银杏制剂所用原料均符合 EGb761的质量标准。但是,随着研究的深入,大量的药理和临床实验都证明了银杏叶提取物中的主要药效成分黄酮甙和萜内酯的药理作用并不完全相同,因此,单一有效成分新药成为近十年来欧美发达国家竞相开发的目标。八十年代初,法国科学家 P. Braquet 领导的研究小组对银杏内酯的药理活性进行了研究,首次发现银杏内酯是一类非常有效的血小板活化因子(PAF)天然拮抗剂,血小板活化因子 PAF 是由血小板和多种炎症细胞产生和分泌的一种内源性磷脂,是迄今发现的最有效的血小板聚集诱导剂,具有广泛的生物学活性,它除导致血栓形成及参与心血管疾病的发生和发展以外,还与其它多种疾病的发生密切相关,如哮喘、休克、炎症、器官移植时的排斥反应等,因此 PAF 拮抗剂的研究一直是八十年代以来寻找上述疾病的特效和高效治疗药物的热点。另外,近年来的研究发现,除银杏内酯外,银杏萜内酯还包括另一类化合物,即白果内酯,它能有效抵抗神经末梢的衰老,对器质性神经系统疾病有明显的疗效,尤其对抑郁症的治疗极为有效,且无毒副作用。银杏内酯口服,生物利用率很高,并能在 1—2 小时内迅速进入血液,这对一般疾病的治疗已不成问题,但用于急救,药效的发挥显得速度较慢,因此近年来国际上热衷于银杏内酯针剂的开发,这对于银杏内酯的制备提出了很高的要求。 为此,我们根据黄酮和萜内酯的结构特点,设计合成了一类兼具氢键、疏水、筛分多种作用的协同效应的吸附树脂,成功地将黄酮和内酯分离,可经吸附、洗脱一步制备含量高于 90%的银杏内酯提取物。 技术原理与工艺流程简介 通过改变反应单体和交联剂,使得所需的功能基团在树脂聚合过程中即被引入到树脂骨架上,通过含有所需功能基的反应单体投料量的变化,控制树脂上功能基含量,使其与银杏黄酮类化合物可发生特异性吸附。由于避免苯环的引入,树脂的极性较大,对银杏内酯的吸附能力大大减弱,所以银杏内酯和黄酮得到有效分离。在此基础上,制备一类孔径均匀的具有筛分能力的吸附树脂,通过改变树脂初始交联度,使其在不同溶胀程度下发生后交联反应,可制备一系列孔径尺寸可调的树脂,通过吸附实验筛选,得到适宜孔径的树脂,用于银杏内酯粗提物中未知杂质的去除,使得银杏内酯含量达到 90%。详细考察吸附溶液浓度、吸附速度、洗脱液浓度、洗脱速度等操作条件对纯化效果的影响,建立最佳提取工艺。 应用领域、技术水平及能为产业解决的关键技术、专利 应用领域为医药、材料行业,可提供低成本、高纯度的银杏内酯提取物(总内酯纯度高于 90%),可进一步研究开发银杏内酯冻干粉针剂,用于脑梗塞(脑血栓形成、脑栓塞)中风中经络的痰瘀阻络症的临床治疗。专利(申请)号:200710057753.6。 应用前景分析及效益预测 利用此种新型吸附树脂制备银杏内酯提取物,工艺简单,可直接用于工业化生产,且与溶剂萃取法相比,该法生产成本大大降低,因此在价格上这种提取物本身已极具市场竞争力,由此开发出的银杏内酯针剂,无疑应具有更强的竞争力和更广泛的应用前景。
南开大学 2021-04-13
FDP系列金属盐的制备
本项目所开发的FDP系列金属盐包括1,6-二磷酸果糖钠盐、钙盐、镁盐、锶盐等。FDP是一种重要的细胞内代谢产物,可以调节糖代谢中若干酶的活性和恢复、改善细胞代谢水平。其产品作为微量元素补充剂广泛应用于食品及饲料添加剂、医药中间体等领域。国内需求额近5亿,国际需求额近30亿。鉴于其功效显著,近年来以20%的速度递增。 本成果主要通过建立代谢网络模型和代谢流分析、利用酵母细胞糖酵解酶系,采用小分子化学物质调控代谢流量以及提高能量自耦联效率的方法,使得FDP对葡萄糖和磷酸盐的转化率达41.1%和92.7%。采用自行设计的连续离子交换系统进行分离,效率明显提高,收率达到92%,纯度达到99.4%。采用新型浓缩脱盐方法收率提高15%左右。首次提出萃取结晶体系结晶FDP,产品收率达95%,产品纯达99.5%,大大改善了产品的结晶性能。设计并发现了新化合物—果糖-1,6-二磷酸锶盐可用于治疗/预防骨质疏松以及性功能障碍,有望成为具有自主知识产权的一类新药。经江苏省科技厅鉴定,该项研究达到了国际领先水平,具有明显的技术优势和良好的应用前景。
南京工业大学 2021-01-12
马波沙星的制备
本发明涉及马波沙星的制备,实现了多步反应的连续进行,效率高,具有合成路线短、所用试剂都为常规易于商业化采购的试剂、操作简便等优点。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 62 63 64
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1