高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
人工智能技术赋能5G超声设备
新冠肺炎常规通过病史、CT等进行病情评估,但重症病房应用超声不便,还需要评估重症患者的心脏等多器官,然而操作者绝大多数不是专业超声医生,这为如何在治疗重症患者的过程中更好地发挥超声的作用提出了难题。深圳国际研究生院袁克虹团队与深圳华声医疗技术股份有限公司合作,用人工智能技术赋能5G超声设备,增添采集心肺关键标准切面的导航以及关键参数的自动测量等功能,辅助医生对重症病人进行动态评估和治疗。 袁克虹团队与深圳华声医疗技术股份有限公司1月中旬组成研发团队,在已有合作工作的基础上,针对新冠肺炎重症患者临床超声的迫切需求开展联合攻关,半个月就获得了较好的成果。该技术从2月初开始在武汉协和西院等多家医院使用,在一定程度上辅助了医生对重症患者进行疾病的动态评估和治疗指导。 目前该技术正由国家感染性疾病临床研究中心(深圳市第三人民医院)牵头开展进一步研究,将完善和改进现有功能,优化远程诊断流程,实现超声为医生治疗重症患者提供更智能、更可靠、更专业的帮助。
清华大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
基于人工智能的器官及粑区自动勾画系统
采用前沿的深度学习算法和相关数据处理技术,经过不断优化和创新,能够在极短时间内完成 CT 图像的人体器官勾画功能,目前已实现 30 多种器官的自动勾画。大量历史病例数据集和模型的不断创新使 DeepViewer 多种器官的勾画精准度达到 95%以上。 
中国科学技术大学 2021-04-14
基于人工智能算法的电弧放电检测系统
在串联回路中,当电弧或放电现象发生时,对电流进行频谱分析,根据电流 的频谱特征变化来确定是否有电弧发生,提供预警信息或保护动作。为了防止在 开关的瞬间或受到其他脉冲电流的干扰造成电弧故障检测电路误动作,同时在频谱分析的基础上综合电弧时间长短等其他特性作为电弧故障的判据。系统的硬件 部分包含电流检测、滤波、故障特征提取等模块。软件部分包含信号采集、信号 处理、故障判别等模块,并综合时间等其他因素降低误报率,提高检测系统的可 靠性。在算法中,采用了人工智能算法以提高系统的适应性。主要成果包
上海理工大学 2021-01-12
人工智能3D编程教育教育解决方案
产品详细介绍    该实验室结合图形化编程(Scratch)和代码编程(Python)方式,以【数学知识+信息技术+3D设计+编程】为主要切入点,选用IME3D系列化软件中的3D编程设计软件Scrath3D和Python3D,及其配套的项目制(PBL)基础和主题课程体系,将编程逻辑、3D设计和开源硬件相结合,开展编程式3D设计教育课程和各项活动。 该实验室的课程内容特色: 充分结合所学的数学知识,如圆锥、圆柱、直线/曲线的斜率等基本概念,并将其通过Scratch、Python等编程方式进行3D数学建模,对生活中常见的物品进行模仿设计,使其成为具有一定功能的创意产品 运用Scrtach3D和Python3D设计软件让学生学习3D编程设计的方法,提升学生自主设计能力和联系理解学科知识的能力,在揭示3D建模背后原理的同时,为学生提供理解编程学习的独特平台 完成一定内容学习和尝试后,结合多种设计方法,进行综合运用性的主题作品设计制作,如用数学的方法来测量学校建筑物的高度,分析模型的特点和结果,并利用合适的编程式3D设计软件构建其模型和3D打印完成作品 结合开源硬件,在给定主题的引导下,进行功能分析、3D设计和编程操作,同时利用3D打印成品进行产品组装,实现功能 编程教学软件:
磐纹科技(上海)有限公司 2021-08-23
四川新尚人工智能科技有限公司
四川新尚人工智能科技有限公司(简称“新尚AI”)是新尚集团旗下专注于人工智能与机器人领域,集研发、制造及销售于一体的科技企业(制造子公司:四川德创机器人科技有限公司),同时也是本科教育、职业教育、K12教育全阶段、贯穿式教育解决方案提供商。 新尚AI基于新尚集团16所双一流高校资源及电子科技大学联合实验室,在K12、高职及本科教育方面形成合力。新尚AI为K12教育打造领先、综合、完整的科创教育解决方案,实现从教、学、管、评、赛、培(教师培训)、研(教学研究)、创(科创)所有环节的全链条覆盖和闭环打通;同时新尚AI也为本科教育、职业教育提供新工科、新职教教育创新解决方案,以校企协同为契机,通过递进式培养、项目制课程、实验室建设和专业共建等方式赋能教育,建设高校科技成果转化中心,打造产教融合示范样板。
四川新尚人工智能科技有限公司 2021-02-01
我国科学家成功打造通用类脑人工智能引擎
8月15日,记者从中国科学院自动化研究所获悉,该所研究人员成功打造全脉冲神经网络类脑认知智能引擎“智脉”,并将其全面开源开放。该平台将为探索面向通用人工智能的类脑智能研究提供基础支撑,助力探索自然智能的计算本质和新一代人工智能的发展。
科技日报 2023-08-17
人工智能标准数据库系统建立与应用
人工智能是一项严重依赖数据的技术,数据量的多少会直接影响产品的性能。而医疗数据又具备其特殊性,受到了严格的保护和使用限制。国外由于有健全的数据管理机制和严格的监管,有很多公开数据集,可供研究单位使用,用于推进人工智能技术的发展。这部分公开数据集虽然也可以被我们所使用,但是受到人种差异限制,某些疾病并不适合亚洲人群(比如:欧美人种和亚洲人种存在乳腺类型差异),且欧美疾病发病率和我国也存在差异。我国医疗数据量远远超过国外,但是受到法规等限制,无法进行数据挖掘,严重限制了我国医疗人工智能技术的发展。目前国家鼓励“产、学、研、用”综合发展,也鼓励科技成果转化。但是,医院空有数据,没有技术,无法进行数据挖掘;研究单位和厂家空有技术,缺乏合法高质量的数据,也无法开展相关研究更无从进行产业化。 该项目已获得“人工智能训练标准库的处理与检测方法、系统”发明专利授权(专利号:CN201710546301.8),本专利的目的是能够建立人工智能所需的标准数据库,通过数据和训练库分离和提供标准数据接口的方式,在保证数据安全的前提下,为研发机构和厂家提供研发数据和验证数据,以便促进我国医疗人工智能技术的发展,产生更多原创算法和适合我国国情的产品。
北京大学 2023-02-27
专家学者齐聚山城 共话学习科学与人工智能如何赋能职业教育
11月16日,学习科学与人工智能赋能职业教育学术交流会在重庆顺利召开。
中国高等教育博览会 2024-12-03
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 311 312 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1