高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
一种肿瘤单
细胞
转录组数据处理方法与软件
1.痛点问题 癌症是目前严重威胁人类生命健康的疾病之一,基于单细胞测序技术研究肿瘤的微环境和异质性,对于理解肿瘤的机制、优化肿瘤的用药方案具有重要意义,而如何对肿瘤单细胞数据进行全面深入的分析,还面临很多挑战。 肿瘤样本具有其独有的特点,在样本制备和单细胞分离过程中,其细胞应激反应大、坏死细胞多,为肿瘤单细胞数据的质量控制带来了挑战; 肿瘤单细胞数据分析有其独有的核心问题,比如复杂的微环境和高度的异质性,而如何充分考虑这些难点,并从信息学的视角进行深入研究,有待建立全面、自动的分析框架; 肿瘤单细胞数据的分析,对科研人员的编程能力和分析经验要求很高,亟需自动化、智能化的软件平台来降低数据分析的门槛,提高研究的效率。 2.解决方案 本项目围绕肿瘤单细胞转录组数据成果的技术核心点包括: 1)针对肿瘤单细胞实验过程中应激反应大、坏死细胞多的问题,提出了全面、精细的数据质量控制方案; 2)涵盖了常规的单细胞数据分析流程(数据标准化、降维、聚类、差异表达分析); 3)创新了肿瘤微环境细胞类型辨识和细胞恶性估计等方面的研究方法; 4)从重要表型(细胞周期、干性)、基因集(已知的和潜在的)两方面深度解析了肿瘤内部的异质性; 5)提出了考虑肿瘤间异质性的批次效应校正方法; 6)构建了自动化、智能化分析的软件平台,能够自动生成全面、直观的分析报告。 基于本项成果产生的产品、服务或解决方案: 1)自动化、集成式的肿瘤单细胞转录组数据分析软件scCancer; 2)针对软件使用和分析结果解读的服务; 3)针对更个性化数据分析需求的咨询与服务。 3、合作需求 团队要求:合作方和团队需要对肿瘤单细胞测序方面有较多的实践经验,能为本项目的应用与落地提供条件; 资金需求:合作方可为团队提供资金支持项目的维护与更新。
清华大学
2022-08-30
乙型肝炎病毒特异性T
细胞
检测试剂盒
利用已经进行功能验证的、被各种HLA-I类分子提呈的100余种HBV抗原肽,对乙型肝炎患者进行HBV特异性T细胞免疫功能状态的检测,为监测疾病进展、判断预后转归、评价药物疗效、预测复发以及评价疫苗效果等提供全新的实验室指标。目前HBV的诊断和疗效观察主要是乙肝两对半和HBV DNA定量检测。这些指标可以监测病毒复制增殖和体液免疫反应,但不能反映患者在抗病毒感染中起更重要作用的特异性T细胞免疫功能状态。本试剂盒目前在国内外市场上没有同类竞争者。
东南大学
2021-04-13
一个新的上皮性肿瘤干
细胞
特异表达的唾液酸化IgG作为上皮性肿瘤
细胞
共有靶点在肿瘤免疫治疗中的应用
目前,随着肿瘤免疫治疗的快速发展,恶性肿瘤的治疗已经逐渐由传统外科手术、化疗、放疗等破坏性治疗转向微创介入及无创性免疫治疗时代。肿瘤免疫治疗的模式旨在不伤害正常组织细胞,对肿瘤细胞实现精准杀伤,其中包括利用治疗性抗体及免疫细胞(如CART及TCRT细胞)靶向肿瘤特异性抗原,实现特异性杀伤,即过继免疫疗法;以及利用肿瘤疫苗激活体内免疫细胞的杀伤效应或阻断肿瘤患者免疫细胞上特有的免疫抑制信号转导(如PD-1/PD-L1),以解除肿瘤患者免疫细胞的免疫无能状态,即主动免疫疗法。可见无论是过继免疫还是主动免疫治疗都严格依赖特异性的肿瘤靶点分子及特异性免疫调控分子。然而,目前肿瘤免疫治疗领域的最大挑战之一是缺乏新的肿瘤靶点及免疫调控分子。 北京大学基础医学院免疫学邱晓彦课题组,从30年前的偶然发现开始,追踪至今,已经证明原本作为重要免疫分子的免疫球蛋白(Immunoglobulin, Ig)在多种恶性肿瘤细胞中大量表达,促进肿瘤的发生及转移。近期的研究发现上皮谱系来源的肿瘤(90%肿瘤属于上皮性肿瘤)普遍表达一种异常唾液酸化IgG, 其唾液酸修饰发生在IgG Fab上一个新的N-糖基化位点, 而在正常组织细胞及B细胞来源的IgG很少或没有这种修饰。重要的是,异常唾液酸化IgG主要表达在上皮来源的肿瘤干/祖细胞上,其表达水平直接涉及肿瘤发生、转移、肿瘤的化疗耐药及不良预后。用特异性识别该唾液酸相关表位的中和抗体,可明显抑制肿瘤生长(包括PDX模型)。提示异常唾液酸化IgG是上皮性肿瘤细胞潜在的共同靶点,尤其是其高表达在肿瘤干/祖细胞上,可能是更理想的肿瘤治疗靶点。目前,该靶点已经获得国家知识产权专利保护(201510776518.9),国际专利正在审批中。
北京大学
2021-02-01
一个新的上皮性肿瘤干
细胞
特异表达的唾液酸化IgG作为上皮性肿瘤
细胞
共有靶点在肿瘤免疫治疗中的应用
项目简介目前,随着肿瘤免疫治疗的快速发展,恶性肿瘤的治疗已经逐渐由传统外科手术、化疗、放疗等破坏性治疗转向微创介入及无创性免疫治疗时代。肿瘤免疫治疗的模式旨在不伤害正常组织细胞,对肿瘤细胞实现精准杀伤,其中包括利用治疗性抗体及免疫细胞(如CART及TCRT细胞)靶向肿瘤特异性抗原,实现特异性杀伤,即过继免疫疗法;以及利用肿瘤疫苗激活体内免疫细胞的杀伤效应或阻断肿瘤患者免疫细胞上特有的免疫抑制信号转导(如PD-1/PD-L1),以解除肿瘤患者免疫细胞的免疫无能状态,即主动免疫疗法。可见无论是过继免疫还是主动免疫治疗都严格依赖特异性的肿瘤靶点分子及特异性免疫调控分子。然而,目前肿瘤免疫治疗领域的最大挑战之一是缺乏新的肿瘤靶点及免疫调控分子。北京大学基础医学院免疫学邱晓彦课题组,从30年前的偶然发现开始,追踪至今,已经证明原本作为重要免疫分子的免疫球蛋白(Immunoglobulin,Ig)在多种恶性肿瘤细胞中大量表达,促进肿瘤的发生及转移。近期的研究发现上皮谱系来源的肿瘤(90%肿瘤属于上皮性肿瘤)普遍表达一种异常唾液酸化IgG, 其唾液酸修饰发生在IgG Fab上一个新的N-糖基化位点, 而在正常组织细胞及B细胞来源的IgG很少或没有这种修饰。重要的是,异常唾液酸化IgG主要表达在上皮来源的肿瘤干/祖细胞上,其表达水平直接涉及肿瘤发生、转移、肿瘤的化疗耐药及不良预后。用特异性识别该唾液酸相关表位的中和抗体,可明显抑制肿瘤生长(包括PDX模型)。提示异常唾液酸化IgG是上皮性肿瘤细胞潜在的共同靶点,尤其是其高表达在肿瘤干/祖细胞上,可能是更理想的肿瘤治疗靶点。目前,该靶点已经获得国家知识产权专利保护(201510776518.9),国际专利正在审批中。
北京大学
2021-04-13
王国俊研究员与合作团队联合发现病毒编码蛋白新机制:病毒基因与
人类
基因融合产生新型嵌合蛋白
RNA病毒一直给人类健康带来巨大威胁。分节段负链RNA病毒(sNSV)通过自身携带的RNA聚合酶抢夺宿主细胞mRNA的5’端帽子结构,转录为病毒mRNA,合成的病毒mRNA是由宿主基因和病毒基因组成的嵌合mRNA。此过程被称为“Cap-snatching”,是sNSV复制周期中的关键环节。 一直以来,人们认为:病毒mRNA翻译的蛋白只包含病毒基因的开放阅读框(ORF),宿主来源的mRNA序列的作用是其5’端帽子结构可供宿主细胞翻译体系识别,其他宿主源遗传信息没有合成病毒蛋白的功能。 该研究揭示了病毒编码蛋白的新机制。 研究发现,病毒抢夺过来的宿主源mRNA片段,不仅起到5’端帽子结构的作用,而且这些宿主源mRNA片段包括起始密码子(AUG),宿主细胞可以从宿主的AUG开始翻译,编码两类宿主与病毒的嵌合蛋白。若宿主源AUG与原有病毒蛋白ORF在同一读码框中(in-frame),产生的蛋白为 N 端延长的宿主与病毒嵌合蛋白; 若宿主源AUG与原有病毒蛋白ORF不在同一读码框中(off-frame),产生的蛋白为新型的嵌合蛋白(Novel host-virus encoded proteins)。 进一步研究结果发现:流感病毒感染细胞后可以产生上述两类嵌合蛋白,这些嵌合蛋白可以诱导T细胞反应,并且与病毒的毒力相关。该研究提示,这种新的病毒蛋白编码机制可能不仅仅局限于流感病毒,在其他人类病毒、动物病毒和植物病毒中也广泛存在这种宿主与病毒嵌合蛋白的编码机制。 本研究是由美国纽约西奈山伊坎医学院(Icahn School of Medicine at Mount Sinai)牵头,多国科研工作者共同合作完成。
内蒙古大学
2021-02-01
南京大学医学院朱敏生教授团队首次发现
人类
顽固性便秘的致病菌并提出全新疗法
Shigella sp PIB是志贺氏菌的新亚型,含鞭毛和丰富菌毛,可长期定殖于大肠粘膜;还能分泌一种长链不饱和脂肪酸,直接抑制肠道节律性收缩、降低肠动力;小鼠口腔摄入PIB细菌可引起小鼠顽固性便秘,其便秘表型与人类慢性便秘高度相似。
南京大学
2022-06-14
miR-34c在体外诱导骨骼肌
细胞
分化中的应用
本发明涉及miR-34c在体外诱导骨骼肌细胞分化中的应用。本发明首次发现一种新的促骨骼肌细胞分化因子—miR-34c,通过Western blot和免疫荧光染色技术检测miR-34c对成肌细胞分化的影响,从而确定miR-34c在骨骼肌发育中的作用,对预防和治疗骨骼肌相关疾病具有重要的意义。
中国农业大学
2021-04-11
微生物
细胞
代谢流在线检测与 计算分析高级发酵罐
本产品和技术依据细胞代谢流在线检测与计算分析原理,配置上除常规的温度、搅拌转 速、消泡、pH、溶解氧浓度 (DO) 等测量控制以外,还增添了发酵液真实体积、高精度补料量 (如基质、前体、油、酸碱物) 测量与控制,高精度通气流量与罐压电信号测量与控制,并与尾 气CO2和O2分析仪或质谱仪连接。可精确得到发酵过程计算机参数优化与放大所必需的包括 各种代谢流特征或工程特征的间接参数,如摄氧率 (OUR) 、二氧化碳释放率 (CER) 、呼吸商 (RQ) 、体积氧传递系数 (KLa) 、比生长速率 (µ) 等。广泛应用于生物制药 (传统生物制药和现 代基因工程制药) 、食品轻工发酵、农业生物 (微生物饲料、微生物农药、微生物肥料和动物 疫苗) 、新兴生物能源和石化环保等行业工业化工程项目的系统设计和全面技术实施。带动了 多个行业技术进步。
华东理工大学
2021-04-11
细胞
色素C分子自组装纳米有序复合结构组装体及制备方法
本发明涉及细胞色素C分子自组装纳米有序复合结构组装体及制法,以羟基磷灰石纳米粒子为基本单元,在三维空间组装成纳米γ-氧化铝模板/羟基磷灰石纳米有序复合结构组装体(组装体1),然后与细胞色素C组装,得到细胞色素C/γ-氧化铝模板/羟基磷灰石纳米有序复合结构组装体,其细胞色素C平均表面含量为4.5×10
东北电力大学
2021-04-30
一种适用于循环肿瘤
细胞
捕获的微流控芯片
癌症从发生到临床发现往往需要10年的时间,癌症治疗的根本途径是早期发现或者对已转移瘤能有效治疗。循环肿瘤细胞(circulatingtumor cells, CTC)是指从原位瘤脱落下来进入到循环系统尤其是血液中的肿瘤细胞。作为液态活检核心靶标的CTC,不仅可用于癌症转移前的早期筛查,而且在临床肿瘤的分期、预后、特异性药物筛选、疗效检测、治疗和复发监测等方面都具有极其重要的临床应用价值。然而由于CTC在血液中数量极其稀少(约1-100个/mL),其高效高准确捕获一直是科学前沿难题和临床应用的关键障碍。 现有的CTC检测方法仍存在较大的局限,包括检测准确度不足、成本高、效率低、时间长以及检测条件苛刻等。本项目提出的新型微流控芯片设计,将基于流线的降速结构和基于过滤的捕获结构有机整合,实现了CTC特异性的汇聚和保留,同时将部分白细胞和红细胞分流到出口。每经过一个这样的降速结构,CTC就被浓缩一次,白细胞和红细胞被分走一部分。更重要的是,每一个单元液流速度均得到了显著下降(变为原来的1/2)。经过多组这样的降速结构,液流流入捕获结构,此时流速已经非常缓慢,利用CTC和其他血细胞的尺寸和形变差异,通过三棱柱阵列能实现CTC的高效捕获。总体来说,本项目所提出的微流控芯片能在很大流速范围内(5-40 mL/h)都实现高捕获效率(高达94.8%)。此外,芯片上捕获到的CTC的纯度也较高(高达4log白细胞去除率)。临床癌症患者患者双盲测试结果详实准确率达到100%。运用本项目中的微流控芯片,将实验室培养的宫颈癌HeLa细胞掺杂到健康血液中,以模拟癌症患者血液,在很大流速范围内(5-40 mL/h)都能实现高捕获效率(高达94.8%)。同时,为了证明此微流控芯片的普适性,测试了四种实验室细胞系,包括乳腺癌细胞系MCF-7和MDA-MB-231,宫颈癌细胞系HeLa和肺癌细胞系NCl-H226,捕获效率均稳定在91.3%以上。此外,也设置了不同的癌细胞密度以模拟实际的癌症患者血液,捕获效率近似为96.2%。随后,将本项目应用于临床,对11例癌症患者血液中的CTC进行检测,检出率高达100%,CTC个数从6-117个/mL不等,平均值31个/mL,中位数25个/mL。这些研究表明本项目中的微流控芯片能实现癌症患者的早期检测。本项目实现对癌症患者血液中的循环肿瘤细胞的单细胞灵敏度和高特异性的的捕获,由于其成本低,方便快速,效率高,对操作条件不敏感等,因而非常适合大规模应用于临床,实现癌症的早期诊断、实时动态监测和阻断转移等效果。
北京大学
2021-04-11
首页
上一页
1
2
...
18
19
20
...
29
30
下一页
尾页
热搜推荐:
1
高校实验室分级分类管理平台
2
云上展厅已成功吸引1万余家企业入驻!
3
第62届高博会圆满落幕,明年春天相约春城!