高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
柔性薄膜组装集成芯片传感器
硅芯片是当代信息技术的核心,当前正向“深度摩尔”(More Moore)和“超越摩尔”(More than Moore)两个方向发展。物联网(IoT)应用是“超越摩尔”技术路线中相当重要的一环,需要数量巨大的集成电路芯片来分析处理来自外部传感器件的海量信号。目前,大多数传感信号采集器件和信号处理单元均为分离设计,将在整体上产生更大功耗并占据更大的空间。由此,复旦大学材料科学系教授梅永丰课题组提出了将信号检测和分析功能集成于同一个芯片器件中的全新概念。作为演示,研究团队将单晶硅薄膜柔性光电晶体管与智能薄膜材料相结合和组装,构造了对不同环境变量进行检测和分析的柔性硅芯片传感器及其系统。这一思路不仅具有优异的可扩展性,还可与当前集成电路先进制造工艺相兼容。5月2日,相关研究结果以《面向智能数字灰尘的硅纳米薄膜光电晶体管多功能集成传感器研究》(“Silicon Nanomembrane Phototransistor Flipped with Multifunctional Sensors towards Smart Digital Dust”)为题发表在《科学进展》(Science Advances)上。研究团队从器件的传感机理入手,利用柔性薄膜组装集成芯片传感器,实现了多种环境参数探测功能的集成。图1:(A) 器件主要功能层示意图;(B) 贴附于曲面上的柔性传感器件阵列;(C) 智能传感器件功能区的光学显微照片;(D)用于湿度传感的集成系统构造图;(E) 氢气通入前后参比器件与检测器件的电流变化,红色为参比电流,蓝色为检测电流。智能材料在环境刺激中可以发生折射率、颜色、晶体结构等方面的光学性质变化,但一般需要光谱设备或比色卡才能进行比对。而翻转的硅薄膜光电晶体管由于没有栅极金属阻挡功能区域的光信号吸收,可以更容易获得高灵敏的传感特性。利用这一点,研究团队将多种智能薄膜材料贴合在器件功能区,智能材料内部物理性质变化引起了微小光学性能改变,从而表现在输出的光电流上,因此可以在同一个芯片上实现对多种不同信号的同时检测。图1A展示了传感器件典型的功能层结构,顶层的智能薄膜材料对环境刺激发生响应,进而改变下方硅单晶薄膜光电晶体管的输出信号。具有2微米厚的热氧化二氧化硅层则作为光电晶体管的封装,对下方器件进行保护。硅薄膜光电晶体管完全由晶圆级先进集成电路工艺方法制备而成,结合了传统硅基光电子器件的高性能和硅纳米薄膜超薄厚度下的优良柔性。图1B是贴附于半径仅为2毫米直径玻璃管上的柔性器件阵列,表现出良好的弯曲性能。图1C是单个器件功能区域的特写,在蓝色虚框部分集成不同智能材料即可实现对不同环境信号的检测。图1D是具有完备传感与数据处理功能的柔性系统合成图,包括传感与参比器件、逻辑与存储单元、信号放大器和电源。研究团队利用该系统实现了对环境中湿度的实时、快速检测,演示的信号为依次减小的三个湿度脉冲。整个过程中直接对环境变化做出响应的信号,即参比器件与传感器件输出电流随时间的变化如图1E中所示。当环境发生变化(如图所示通入氢气),传感器件的输出电流大幅增加,而参比电流保持平稳,再利用差分电路处理,即可给出所检测的环境参数的值。研究团队开发了将智能材料与光电传感结合的新颖传感机制,并将传感模块与后续信号处理等模块集成在一起,展示了其在气体浓度、湿度、温度等多种环境参数检测方面的能力,已经初步具备了未来的“智能数字灰尘”的雏形。该策略也可以应用于其他的数字传感系统,在后摩尔时代中将具有巨大的应用潜力。论文主要由李恭谨博士,博士研究生马喆和尤淳瑜合作完成,并获得韩国延世大学Taeyoon Lee教授和中科院微系统所狄增峰研究员的合作支持。该工作得到国家自然科学基金委、上海市科委、复旦大学和专用集成电路与系统国家重点实验室等大力支持。
复旦大学 2021-04-11
一种薄膜制备装置(未授权)
西南大学 2021-04-13
氮化铝薄膜和高频滤波器
高效率制备高品质氮化铝薄膜,并研究应用于 4G、5G 通信(智能手机和基站)的高频滤波器。制备薄膜质量高于现有工艺,制备效率提高十倍以上。作为制备滤波器的关键薄膜性能指标,薄膜的取向性良好(XRD摇摆曲线半高宽2度左右), 薄膜表面起伏小于 1 纳米;薄膜制备效率比传统工艺提高 10 倍以上 
中国科学技术大学 2021-04-14
新型薄膜太阳能电池技术
CZTS薄膜太阳电池:虽然CIGS 是目前薄膜太阳能电池中光电转换效率最高的太阳能电池,但是由于In和Ga元素是稀有金属,在面向大规模生产时受到元素稀缺的制约。有机-无机杂化钙钛矿太阳电池:将无机材料电子迁移率高、机械性能良好、稳定性高和有机材料光吸收率较高、易加工的优点加以整合,发挥协同效应,提高光伏电池的整体性能,是未来太阳能电池最重要的研究方向。
常州大学 2021-04-14
氮化镓陶瓷薄膜电路的激光直写
LPKF ProtoLaser R4可针对敏感基材实现高精度加工
乐普科(天津)光电有限公司 2022-06-22
氧化铁黑
氧化铁黑是一种带有磁性的黑色颜料,由于性能优异,应用广泛,且深受商家的重视。在我国,此种产品研究和生产使用的历史较短,随着现代化科学技术的发展,现代化办公用品的不断更新,使带磁性的黑色印刷,复印材料的迫切需要,使氧化铁黑等黑色磁性颜料的开发研究及应用备受重视,研究和生产的商家看到这一不可多得的商机,纷纷上马。由于新产品的技术含量较高,致使较多的生产厂家质量或生产成本存在一定的缺陷,以致该产品上不去,产品市场供应较紧缺。 氧化铁黑产品是黑色或黑红色粉末,具有磁性,相对密度为5.18,熔点为1594℃。不溶于水及醇,但溶于浓盐酸,耐光,耐候性良好,着色力和遮盖力都很高,在有机溶剂中十分稳定,耐碱性良好,但颗粒易被氧化变成红色的氧化铁,在200-300℃时灼烧则易形成γ-Fe2O3。
武汉工程大学 2021-04-11
仿生催化氧化技术
以酶类结构的金属卟啉为催化剂,模仿生物氧化历程,突破温和条件下高效、专一活化氧气的技术难 题,实现高附加值含氧有机化物的合成,并致力于实现该技术的工业应用,填补国内外技术空白,从本质 上解决化工领域氧化过程的安全隐患。
中山大学 2021-04-10
甲酸电氧化技术
近日,清华大学化学系王定胜教授、李亚栋院士领导的课题组在甲酸电氧化领域取得突破,相关工作以“负载在氮掺杂碳上的单原子Rh:一种甲酸氧化的电催化剂”(Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation)为题在《自然·纳米技术》(Nature Nanotechnology)发表。燃料电池是一种理想的能量来源,它可以以环境友好的方式将化学能转换为电能。氢氧燃料电池作为航空飞船的主要燃料,在上世纪80年代就已经得到了发展,近年来氢氧燃料电池在汽车上的应用也有了突飞猛进的提高。然而氢氧燃料电池需要用体积大且危险的高压氢气作为其燃料,这限制了氢氧燃料电池的发展。而直接甲酸燃料电池(DFAFCs)由于其体积小,毒性小,nafion@膜的穿透率低等优点,被认为是未来便携式电子设备最有前途的电源之一。在之前的研究中,负载型纳米级钯和铂通常被认为是DFAFCs的阳极反应甲酸电氧化(FOR)中最有效的催化剂,并得到了深入的研究。然而,由于FOR催化剂质量活性较低和一氧化碳抗毒性较差, DFAFCs阳极材料的发展达到了一个瓶颈,极大地阻碍了其应用。SA-Rh/CN的合成路径示意图及其表征在本工作中,研究人员使用主-客体合成策略成功地合成负载原子分散Rh的氮掺杂碳催化剂(SA-Rh/CN),发现尽管Rh纳米颗粒对甲酸氧化活性很低,但是SA-Rh/CN却具有极好的电催化性能。与最先进的催化剂Pd/C和Pt/C相比,SA-Rh/CN的质量活性分别提高了28倍和67倍。有趣的是,在CO剥离实验中,我们发现虽然纳米级Rh催化剂对CO毒性十分敏感,但是SA-Rh/CN很难吸附CO并且可以在很低的电压下氧化CO,这说明SA-Rh/CN对CO毒化几乎免疫。经过长期反应的测试后,SA-Rh/CN中的Rh原子具有抗烧结的能力,并因此在30000s的CA测试或者20000圈ADT测试后活性几乎没有改变。在组装电池的实验中,SA-Rh/CN的质量比能量密度在不同温度下分别是商业钯碳催化剂的8.8倍(30oC),14.8倍(60oC)和14.1倍(80oC),这也说明了SA-Rh/CN在DFAFCs的应用中具有很高的潜力。最后,研究者用密度泛函理论(DFT)计算了Rh单原子甲酸氧化的机理。研究者发现在SA-Rh/CN上,甲酸根路线更为有利。和Rh纳米颗粒具有较低的CO吸附能垒不一样,SA-Rh/CN上的Rh单原子吸附CO能垒较高,以及与CO的相对不利的结合,使SA-Rh/CN具有极高的CO抗毒性。这一发现将传统的甲酸电氧化催化剂的质量比活性提高了一个数量级,并且很好地解决了传统纳米催化剂的CO毒化问题。该发现有助于在燃料电池领域取得突破,并有望应用于便携式电子设备上。本论文的通讯作者是王定胜教授、李亚栋院士,清华大学博士后熊禹是本文的第一作者。本研究受到国家自然科学基金委和科技部的经费资助。论文链接:https://www.nature.com/articles/s41565-020-0665-x
清华大学 2021-04-11
微弧氧化技术
微弧氧化(Micro-arc oxidation,MAO)技术是通过电解液与相应电参数的组合,在铝、镁、钛及其合金表面依靠弧光放电产生的瞬时高温高压作用,原位生长出以基体金属氧化物为主的陶瓷膜层。 微弧氧化工艺克服了硬质阳极氧化的缺陷,极大地提高了膜层的综合性能。微弧氧化膜层与基体结合牢固,结构致密,韧性高,具有良好的耐磨、耐腐蚀、耐高温冲击和电绝缘等特性。该技术具有操作简单和易于实现膜层功能调节的特点,而且工艺不复杂,无废水废气排放,不造成环境污染,是一项全新的绿色环保型材料表面处
常州大学 2021-04-14
厌氧氨氧化
青岛思普润水处理股份有限公司 2021-09-02
首页 上一页 1 2
  • ...
  • 8 9 10
  • ...
  • 79 80 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1